- 970.00 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第一章集合与常用逻辑用语
第一节集__合
1.集合的相关概念
(1)集合元素的三个特性确定性、无序性、互异性.
(2)元素与集合的两种关系属于,记为∈;不属于,记为∉.
(3)集合的三种表示方法列举法、描述法、图示法.
(4)五个特定的集合
集合
自然数集
正整数集
整数集
有理数集
实数集
符号
N
N*或N+
Z
Q
R
2.集合间的基本关系
表示
关系
文字语言
符号语言
记法
基本关系
子集
集合A的元素都是集合B的元素
x∈A⇒
x∈B
A⊆B或B⊇A
真子集
集合A是集合B的子集,且集合B中至少有一个元素不属于A
A⊆B,且∃x0∈B,x0∉A
AB或
BA
相等
集合A,B的元素完全相同
A⊆B,
B⊆A
A=B
空集
不含任何元素的集合.空集是任何集合A的子集
∀x,x∉∅,∅⊆A
∅
3.集合的基本运算
表示
运算
文字语言
符号语言
图形语言
记法
交集
属于集合A且属于集合B的元素组成的集合
{x|x∈A,且x∈B}
A∩B
并集
属于集合A或属于集合B的元素组成的集合
{x|x∈A,或x∈B}
A∪B
补集
全集U中不属于集合A的元素组成的集合
{x|x∈U,且x∉A}
∁UA
4.集合问题中的几个基本结论
(1)集合A是其本身的子集,即A⊆A;
(2)子集关系的传递性,即A⊆B,B⊆C⇒A⊆C;
(3)A∪A=A∩A=A,A∪∅=A,A∩∅=∅,∁UU=∅,∁U∅=U.
[小题体验]
1.已知集合P={x|x<2},Q={x|x2<2},则( )
A.P⊆Q B.P⊇Q
C.P⊆∁RQ D.Q⊆∁RP
答案B
2.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.
答案5
3.设集合A={x|(x+1)(x-2)<0},B={x|0≤x≤3},则A∩B=________.
答案{x|0≤x<2}
1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件.
2.解题时注意区分两大关系一是元素与集合的从属关系;二是集合与集合的包含关系.
3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.
4.运用数轴图示法易忽视端点是实心还是空心.
5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.
[小题纠偏]
1.设全集U=R,集合A={x|7-6x≤0},集合B={x|y=lg(x+2)},则(∁UA)∩B等于( )
A. B.
C. D.
解析选A 依题意得A=,∁UA=;B={x|x+2>0}={x|x>-2},因此(∁UA)∩B=.
2.已知集合A={x∈N|x2-2x≤0},则满足A∪B={0,1,2}的集合B的个数为________.
解析由A中的不等式解得0≤x≤2,x∈N,即A={0,1,2}.∵A∪B={0,1,2},∴B可能为{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},∅,共8个.
答案8
3.已知集合A={0,1,x2-5x},若-4∈A,则实数x的值为________.
解析∵-4∈A,∴x2-5x=-4,
∴x=1或x=4.
答案1或4
[题组练透]
1.(易错题)已知集合A={1,2,4},则集合B={(x,y)|x∈A,y∈A}中元素的个数为( )
A.3 B.6
C.8 D.9
解析选D 集合B中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.
2.已知a,b∈R,若={a2,a+b,0},则a2 017+b2 017为( )
A.1 B.0
C.-1 D.±1
解析选C 由已知得a≠0,则=0,所以b=0,于是a2=1,即a=1或a=-1,又根据集合中元素的互异性可知a=1应舍去,因此a=-1,故a2 017+b2 017=(-1)2 017+02 017=-1.
3.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a等于( )
A. B.
C.0 D.0或
解析选D 若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.
当a=0时,x=,符合题意.
当a≠0时,由Δ=(-3)2-8a=0,得a=,
所以a的值为0或.
4.(易错题)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.
解析由题意得m+2=3或2m2+m=3,则m=1或m=-,当m=1时,m+2=3且2m2+m=3,根据集合中元素的互异性可知不满足题意;当m=-时,m+2=,而2m2+m=3,故m=-.
答案-
[谨记通法]
与集合中的元素有关问题的求解策略
(1)确定集合的元素是什么,即集合是数集还是点集.如“题组练透”第1题.
(2)看这些元素满足什么限制条件.
(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.如“题组练透”第4题.
[典例引领]
1.已知集合M={1,2,3,4},则集合P={x|x∈M且2x∉M}的子集有( )
A.8个 B.4个
C.3个 D.2个
解析选B 由题意,得P={3,4},所以集合P的子集有22=4个.
2.已知集合A={x|y=,x∈R},B={x|x=m2,m∈A},则( )
A.AB B.BA
C.A⊆B D.B=A
解析选B 由题意知A={x|y=,x∈R},所以A={x|-1≤x≤1}.所以B={x|x=m2,m∈A}={x|0≤x≤1},所以BA,故选B.
[由题悟法]
集合间基本关系的两种判定方法和一个关键
[即时应用]
1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )
A.1 B.2
C.3 D.4
解析选D 由x2-3x+2=0得x=1或x=2,
∴A={1,2}.
由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
2.已知集合A={x|-10时,∵A={x|-11},若A∩B=A,则a的取值范围是( )
A.[5,+∞) B.[4,+∞)
C.(-∞,-5) D.(-∞,4)
解析选B B=,由A∩B=A⇒A⊆B,
∴≤-1,解得a≥4.
角度三新定义集合问题
4.设A,B是非空集合,定义AB={x|x∈A∪B且xA∩B}已知集合A={x|00},则A∩B=( )
A. B.
C. D.
解析选D ∵x2-4x+3<0,∴10,∴x>,∴B=.
∴A∩B={x|10},则AB为( )
A.{x|02}
解析选D 因为A={x|0≤x≤2},B={y|y>1},A∪B={x|x≥0},A∩B={x|12},故选D.
4.(2017·湖北七市(州)协作体联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为( )
A.147 B.140
C.130 D.117
解析选B 由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5时有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.
一抓基础,多练小题做到眼疾手快
1.(2016·全国甲卷)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )
A.{1} B.{1,2}
C.{0,1,2,3} D.{-1,0,1,2,3}
解析选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-10},则下列结论正确的是( )
A.M⊆N B.M⊆(∁RN)
C.(∁RM)⊆N D.(∁RM)⊆(∁RN)
解析选B 由题意,得N={x|x<-1或x>3},
所以∁RN={x|-1≤x≤3},又M={x|0≤x≤2},
所以M是∁RN的子集,故选B.
3.(2017·中原名校联考)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁UA)∪B=( )
A.(2,3]
B.(-∞,1]∪(2,+∞)
C.[1,2)
D.(-∞,0)∪[1,+∞)
解析选D 因为∁UA={x|x>2或x<0},B={y|1≤y≤3},所以(∁UA)∪B=(-∞,0)∪[1,+∞).
4.(2017·河南六市第一次联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是( )
A.(0,3) B.(0,1)∪(1,3)
C.(0,1) D.(-∞,1)∪(3,+∞)
解析选B ∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0m+2},
因为A⊆∁RB,
所以m-2>3或m+2<-1,
即m>5或m<-3.
因此实数m的取值范围是(-∞,-3)∪(5,+∞).
三上台阶,自主选做志在冲刺名校
1.已知集合A={x|x2-2 017x+2 016<0},B={x|log2xy2,则x>y”的逆否命题是________.
答案“若x≤y,则x2≤y2”
1.易混淆否命题与命题的否定否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.
2.易忽视A是B的充分不必要条件(A⇒B且B A)与A的充分不必要条件是B(B⇒A且A B)两者的不同.
[小题纠偏]
1.设a,b均为非零向量,则“a∥b”是“a与b的方向相同”的________条件.
答案必要不充分
2.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为________________.
解析原命题的条件在△ABC中,∠C=90°,
结论∠A,∠B都是锐角.否命题是否定条件和结论.
即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.
答案在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角
[题组练透]
1.命题“若a2>b2,则a>b”的否命题是( )
A.若a2>b2,则a≤b B.若a2≤b2,则a≤b
C.若a≤b,则a2>b2 D.若a≤b,则a2≤b2
解析选B 根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为若a2≤b2,则a≤b.
2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为( )
A.“若x=4,则x2+3x-4=0”为真命题
B.“若x≠4,则x2+3x-4≠0”为真命题
C.“若x≠4,则x2+3x-4≠0”为假命题
D.“若x=4,则x2+3x-4=0”为假命题
解析选C 根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.
3.给出以下四个命题
①“若x+y=0,则x,y互为相反数”的逆命题;
②(易错题)“全等三角形的面积相等”的否命题;
③“若q≤-1,则x2+x+q=0有实根”的逆否命题;
④若ab是正整数,则a,b都是正整数.
其中真命题是________.(写出所有真命题的序号)
解析①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.
答案①③
[谨记通法]
1.写一个命题的其他三种命题时的2个注意点
(1)对于不是“若p,则q”形式的命题,需先改写;
(2)若命题有大前提,写其他三种命题时需保留大前提.如“题组练透”第3题②易忽视.
2.命题真假的2种判断方法
(1)联系已有的数学公式、定理、结论进行正面直接判断.
(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.
[典例引领]
1.(2015·北京高考)设a,b是非零向量,“a·b=|a||b|”是“a∥b”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析选A a·b=|a||b|cos〈a,b〉.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.
2.(2017·衡阳联考)设px2-x-20>0,qlog2(x-5)<2,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析选B ∵x2-x-20>0,∴x>5或x<-4,∴px>5或x<-4.∵log2(x-5)<2,∴05或x<-4},∴p是q的必要不充分条件.故选B.
[由题悟法]
充要条件的3种判断方法
(1)定义法根据p⇒q,q⇒p进行判断;
(2)集合法根据p,q成立的对象的集合之间的包含关系进行判断;
(3)等价转化法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.
[即时应用]
1.(2016·天津高考)设x>0,y∈R,则“x>y”是“x>|y|”的( )
A.充要条件 B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
解析选C 当x=1,y=-2时,x>y,但x>|y|不成立;若x>|y|,因为|y|≥y,所以x>y.所以x>y是x>|y|的必要而不充分条件.
2.已知条件px+y≠-2,条件qx,y不都是-1,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析选A 因为px+y≠-2,qx≠-1,或y≠-1,
所以綈px+y=-2,綈qx=-1,且y=-1,
因为綈q⇒綈p但綈p綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.
[典例引领]
1.(2017·皖北第一次联考)已知px≥k,q<1,如果p是q的充分不必要条件,则实数k的取值范围是( )
A.[2,+∞) B.(2,+∞)
C.[1,+∞) D.(-∞,-1)
解析选B ∵<1,∴-1=<0,即(x-2)(x+1)>0,∴x>2或x<-1,∵p是q的充分不必要条件,∴k>2.
2.设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=________.
解析由Δ=16-4n≥0,得n≤4,又n∈N*,则n=1,2,3,4.当n=1,2时,方程没有整数根,当n=3时,方程有整数根1,3,当n=4时,方程有整数根2,综上知n=3或4.
答案3或4
[由题悟法]
根据充要条件求参数的值或取值范围的关键点
(1)先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.
(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]
1.已知命题px2+2x-3>0;命题qx>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )
A.[1,+∞) B.(-∞,1]
C.[-1,+∞) D.(-∞,-3]
解析选A 由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.
2.已知“命题p(x-m)2>3(x-m)”是“命题qx2+3x-4<0”成立的必要不充分条件,则实数m的取值范围为________________.
解析命题px>m+3或x<m,
命题q-4<x<1.
因为p是q成立的必要不充分条件,
所以m+3≤-4或m≥1,
故m≤-7或m≥1.
答案(-∞,-7]∪[1,+∞)
一抓基础,多练小题做到眼疾手快
1.“(2x-1)x=0”是“x=0”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析选B 若(2x-1)x=0,则x=或x=0,即不一定是x=0;若x=0,则一定能推出(2x-1)x=0.故“(2x-1)x=0”是“x=0”的必要不充分条件.
2.已知集合A={1,m2+1},B={2,4},则“m=”是“A∩B={4}”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析选A 若A∩B={4},则m2+1=4,∴m=±,故“m=”是“A∩B={4}”的充分不必要条件.
3.(2017·山东重点中学模拟)已知命题p“正数a的平方不等于0”,命题q“若a不是正数,则它的平方等于0”,则q是p的( )
A.逆命题 B.否命题
C.逆否命题 D.否定
解析选B 命题p“正数a的平方不等于0”写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.
4.命题p“若x2<1,则x<1”的逆命题为q,则p与q的真假性为( )
A.p真q真 B.p真q假
C.p假q真 D.p假q假
解析选B q若x<1,则x2<1.
∵px2<1,则-15是x>a的充分条件,则实数a的取值范围为( )
A.a>5 B.a≥5
C.a<5 D.a≤5
解析选D 由x>5是x>a的充分条件知,{x|x>5}⊆{x|x>a}.
∴a≤5,故选D.
二保高考,全练题型做到高考达标
1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )
A.“若一个数是负数,则它的平方不是正数”
B.“若一个数的平方是正数,则它是负数”
C.“若一个数不是负数,则它的平方不是正数”
D.“若一个数的平方不是正数,则它不是负数”
解析选B 依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.
2.(2016·四川高考)设p实数x,y满足x>1且y>1,q实数x,y满足x+y>2,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析选A ∵∴x+y>2,即p⇒q.
而当x=0,y=3时,有x+y=3>2,但不满足x>1且y>1,即q⇒/ p.故p是q的充分不必要条件.
3.有下列命题
①“若x+y>0,则x>0且y>0”的否命题;
②“矩形的对角线相等”的否命题;
③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;
④“若a+7是无理数,则a是无理数”的逆否命题.
其中正确的是( )
A.①②③ B.②③④
C.①③④ D.①④
解析选C ①的逆命题为“若x>0且y>0,则x+y>0”为真,故否命题为真;
②的否命题为“不是矩形的图形对角线不相等”,为假命题;
③的逆命题为,若mx2-2(m+1)x+m+3>0的解集为R,则m≥1.
∵当m=0时,解集不是R,
∴应有 即m>1.∴③是真命题;
④原命题为真,逆否命题也为真.
4.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
解析选C 设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然CD,所以BA.于是“x≠y”是“cos x≠cos y”的必要不充分条件.
5.命题“对任意x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是( )
A.a≥4 B.a>4
C.a≥1 D.a>1
解析选B 要使“对任意x∈[1,2),x2-a≤0”为真命题,只需要a≥4,∴a>4是命题为真的充分不必要条件.
6.命题“若a>b,则ac2>bc2(a,b∈R),”否命题的真假性为________.
解析命题的否命题为“若a≤b,则ac2≤bc2”.若c=0,结论成立.若c≠0,不等式ac2≤bc2也成立.故否命题为真命题.
答案真
7.在命题“若m>-n,则m2>n2”的逆命题、否命题、逆否命题中,假命题的个数是________.
解析若m=2,n=3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m=-3,n=-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.
答案3
8.下列命题
①“a>b”是“a2>b2”的必要条件;②“|a|>|b|”是“a2>b2”的充要条件;③“a>b”是“a+c>b+c”的充要条件.
其中是真命题的是________(填序号).
解析①a>b⇒/ a2>b2,且a2>b2⇒/ a>b,故①不正确;
②a2>b2⇔|a|>|b|,故②正确;
③a>b⇒a+c>b+c,且a+c>b+c⇒a>b,故③正确.
答案②③
9.设等比数列{an}的公比为q,前n项和为Sn,则“|q|=1”是“S4=2S2”的________条件.
解析∵等比数列{an}的前n项和为Sn,又S4=2S2,
∴a1+a2+a3+a4=2(a1+a2),∴a3+a4=a1+a2,
∴q2=1⇔|q|=1,∴“|q|=1”是“S4=2S2”的充要条件.
答案充要
10.已知集合A=,B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.
解y=x2-x+1=2+,
∵x∈,∴≤y≤2,
∴A=.
由x+m2≥1,得x≥1-m2,
∴B={x|x≥1-m2}.
∵“x∈A”是“x∈B”的充分条件,
∴A⊆B,∴1-m2≤,
解得m≥或m≤-,
故实数m的取值范围是∪.
三上台阶,自主选做志在冲刺名校
1.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析选D 当等比数列{an}的首项a1<0,公比q>1时,如an=-2n是递减数列,所以充分性不成立;
反之,若等比数列{an}为递增数列,
则或所以必要性不成立,即“q>1”是“{an}为递增数列”的既不充分也不必要条件.
2.已知αx≥a,β|x-1|<1.若α是β的必要不充分条件,则实数a的取值范围为________.
解析αx≥a,可看作集合A={x|x≥a},
∵β|x-1|<1,∴00时,B={x|a0时,B={x|a0;q“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是( )
A.p∧q B.綈p∧綈q
C.綈p∧q D.p∧綈q
解析选D 因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q,綈p为假命题,綈q为真命题,綈p∧綈q,綈p∧q为假命题,p∧綈q为真命题.
2.命题p∃x0∈R,x-x0+1≤0的否定是( )
A.∃x0∈R,x-x0+1>0 B.∀x∈R,x2-x+1≤0
C.∀x∈R,x2-x+1>0 D.∃x0∈R,x-x0+1<0
答案C
3.已知命题px2+4x+3≥0,qx∈Z,且“p∧q”与“綈q”同时为假命题,则x=________.
解析若p为真,则x≥-1或x≤-3,
因为“綈q”为假,则q为真,即x∈Z,
又因为“p∧q”为假,
所以p为假,
故-3sin x B.∃x0∈R,sin x0+cos x0=2
C.∀x∈R,3x>0 D.∃x0∈R,lg x0=0
解析选B 因为对∀x∈R,sin x+cos x=sin≤,所以“∃x0∈R,sin x0+cos x0=2”为假命题.
2.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p∀x∈A,2x∈B,则( )
A.綈p∀x∈A,2x∉B B.綈p∀x∉A,2x∉B
C.綈p∃x0∉A,2x0∈B D.綈p∃x0∈A,2x0∉B
解析选D 命题p∀x∈A,2x∈B是一个全称命题,其命题的否定綈p应为∃x0∈A,2x0∉B,故选D.
3.(2017·西安质检)已知命题p∃x0∈R,log2(3x0+1)≤0,则( )
A.p是假命题;綈p∀x∈R,log2(3x+1)≤0
B.p是假命题;綈p∀x∈R,log2(3x+1)>0
C.p是真命题;綈p∀x∈R,log2(3x+1)≤0
D.p是真命题;綈p∀x∈R,log2(3x+1)>0
解析选B ∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题綈p∀x∈R,log2(3x+1)>0.故应选B.
[谨记通法]
1.全称命题与特称命题的否定
(1)改写量词确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.
(2)否定结论对原命题的结论进行否定.
2.全称命题与特称命题真假的判断方法
不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.
命题名称
真假
判断方法一
判断方法二
全称命题
真
所有对象使命题真
否定为假
假
存在一个对象使命题假
否定为真
特称命题
真
存在一个对象使命题真
否定为假
假
所有对象使命题假
否定为真
[典例引领]
(2017·海口调研)已知命题p若a0,使得x0-1-ln x0=0,则下列命题为真命题的是( )
A.p∧q B.p∨(綈q)
C.(綈p)∧q D.(綈p)∧(綈q)
解析选C 依题意,对于p,注意到当c=0时,ac2=bc2,因此命题p是假命题;对于q,注意到当x0=1时,x0-1-ln x0=0,因此命题q是真命题,命题綈q是假命题,p∧q是假命题,p∨(綈q)是假命题,(綈p)∧q是真命题,(綈p)∧(綈q)是假命题,综上所述,选C.
[由题悟法]
判断含有逻辑联结词命题真假的2个步骤
(1)先判断简单命题p,q的真假.
(2)再根据真值表判断含有逻辑联结词命题的真假.
[即时应用]
1.已知命题p∀x∈R,2x<3x,命题q∃x∈R,x2=2-x,若命题(綈p)∧q为真命题,则x的值为( )
A.1 B.-1
C.2 D.-2
解析选D ∵綈p∃x∈R,2x≥3x,要使(綈p)∧q为真,
∴綈p与q同时为真.由2x≥3x得x≥1,∴x≤0,
由x2=2-x得x2+x-2=0,
∴x=1或x=-2,又x≤0,∴x=-2.
2.已知命题p若x>y,则-x<-y;命题q若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是( )
A.①③ B.①④ C.②③ D.②④
解析选C 由不等式的性质可知,命题p是真命题,命题q为假命题,故①p∧q为假命题;②p∨q为真命题;③綈q为真命题,则p∧(綈q)为真命题;④綈p为假命题,则(綈p)∨q为假命题,故选C.
[典例引领]
给定命题p对任意实数x都有ax2+ax+1>0成立;q关于x的方程x2-x+a=0有实数根.如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
解当p为真命题时,“对任意实数x都有ax2+ax+1>0成立”⇔a=0或∴0≤a<4.
当q为真命题时,“关于x的方程x2-x+a=0有实数根”⇔Δ=1-4a≥0,∴a≤.
∵p∨q为真命题,p∧q为假命题,
∴p,q一真一假.
∴若p真q假,则0≤a<4,且a>,∴0,若p∨q为假命题,则实数m的取值范围是( )
A.[2,+∞) B.(-∞,-2]
C.(-∞,-2]∪[2,+∞) D.[-2,2]
解析选A 依题意知,p,q均为假命题.当p是假命题时,mx2+1>0恒成立,则有m≥0;当q是假命题时,则有Δ=m2-4≥0,m≤-2或m≥2.因此由p,q均为假命题得即m≥2.
2.已知函数f(x)=x2+mx+1,若命题“∃x0>0,f(x0)<0”为真,则m的取值范围是________.
解析因为函数f(x)=x2+mx+1的图象过点(0,1),若命题“∃x0>0,f(x0)<0”为真,则函数f(x)=x2+mx+1的图象的对称轴必在y轴的右侧,且与x轴有两个不同交点,所以解得m<-2,所以m的取值范围是(-∞,-2).
答案(-∞,-2)
一抓基础,多练小题做到眼疾手快
1.命题“∃x0≤0,x≥0”的否定是( )
A.∀x≤0,x2<0 B.∀x≤0,x2≥0
C.∃x0>0,x>0 D.∃x0<0,x≤0
答案A
2.已知命题p对任意x∈R,总有|x|≥0;
qx=1是方程x+2=0的根.
则下列命题为真命题的是( )
A.p∧綈q B.綈p∧q
C.綈p∧綈q D.p∧q
解析选A 由题意知命题p是真命题,命题q是假命题,故綈p是假命题,綈q
是真命题,由含有逻辑联结词的命题的真值表可知p∧綈q是真命题.
3.已知命题p“x>3”是“x2>9”的充要条件,命题q“a2>b2”是“a>b”的充要条件,则( )
A.p∨q为真 B.p∧q为真
C.p真q假 D.p∨q为假
解析选D 由x>3能够得出x2>9,反之不成立,故命题p是假命题;由a2>b2可得|a|>|b|,但a不一定大于b,反之也不一定成立,故命题q是假命题.所以p∨q为假.
4.(2017·唐山一模)已知命题p∃x0∈N,x0,即a2-2a-3>0,解得a<-1或a>3,故选D.
二保高考,全练题型做到高考达标
1.命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( )
A.∀n∈N*,f(n)∉N*且f(n)>n
B.∀n∈N*,f(n)∉N*或f(n)>n
C.∃n0∈N*,f(n0)∉N*且f(n0)>n0
D.∃n0∈N*,f(n0)∉N*或f(n0)>n0
解析选D 全称命题的否定为特称命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“∃n0∈N*,f(n0)∉N*或f(n0)>n0”,故选D.
2.(2016·衡阳一模)已知命题p∃α∈R,cos(π-α)=cos α;命题q∀x∈R,x2+1>0.则下面结论正确的是( )
A.p∧q是真命题 B.p∧q是假命题
C.綈p是真命题 D.p是假命题
解析选A 对于p取α=,则cos(π-α)=cos α,正确;
对于命题q∀x∈R,x2+1>0,正确.由此可得p∧q是真命题.故选A.
3.(2017·皖南八校联考)下列命题中,真命题是( )
A.存在x0∈R,sin2+cos2=
B.任意x∈(0,π),sin x>cos x
C.任意x∈(0,+∞),x2+1>x
D.存在x0∈R,x+x0=-1
解析选C 对于A选项∀x∈R,sin2+cos2=1,故A为假命题;对于B选项存在x=,sin x=,cos x=,sin x0恒成立,C为真命题;对于D选项x2+x+1=2+>0恒成立,不存在x0∈R,使x+x0=-1成立,故D为假命题.
4.已知命题p∀x>0,x+≥4;命题q∃x0∈(0,+∞),2x0=.则下列判断正确的是( )
A.p是假命题 B.q是真命题
C.p∧(綈q)是真命题 D.(綈p)∧q是真命题
解析选C 因为当x>0时,x+≥2 =4,当且仅当x=2时等号成立,所以p是真命题,当x>0时,2x>1,所以q是假命题,
所以p∧(綈q)是真命题,(綈p)∧q是假命题.
5.(2017·南昌模拟)下列说法错误的是( )
A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”
B.若命题p存在x0∈R,x+x0+1<0,则綈p对任意x∈R,x2+x+1≥0
C.若x,y∈R,则“x=y”是“xy≥2”的充要条件
D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假
解析选D 由原命题与逆否命题的关系知A正确;由特称命题的否定知B正确;由xy≥2⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y知C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.
6.命题p的否定是“对所有正数x,>x+1”,则命题p可写为________________________.
解析因为p是綈p的否定,所以只需将全称命题变为特称命题,再对结论否定即可.
答案∃x0∈(0,+∞),≤x0+1
7.(2017·枣庄一模)若“∀x∈,m≤tan x+1”为真命题,则实数m的最大值为________.
解析“∀x∈,m≤tan x+1”为真命题,可得-1≤tan x≤1,∴0≤tan x+1≤2,∴实数m的最大值为0.
答案0
8.已知命题“∀x∈R,x2-5x+a>0”的否定为假命题,则实数a的取值范围是________.
解析由“∀x∈R,x2-5x+a>0”的否定为假命题,可知原命题必为真命题,即不等式x2-5x+a>0对任意实数x恒成立.
设f(x)=x2-5x+a,则其图象恒在x轴的上方.故Δ=25-4×a<0,
解得a>,即实数a的取值范围为.
答案
9.下列结论
①若命题p∃x0∈R,tan x0=2;命题q∀x∈R,x2-x+>0.则命题“p∧(綈q)”是假命题;
②已知直线l1ax+3y-1=0,l2x+by+1=0,则l1⊥l2的充要条件是=-3;
③“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”.
其中正确结论的序号为________.(把你认为正确结论的序号都填上)
解析在①中,命题p是真命题,命题q也是真命题,故“p∧(綈q)”是假命题是正确的.在②中,由l1⊥l2,得a+3b=0,所以②不正确.在③中“设a,b∈R,若ab≥2,则a2+b2>4”的否命题为“设a,b∈R,若ab<2,则a2+b2≤4”正确.
答案①③
10.已知命题p“存在a>0,使函数f(x)=ax2-4x在(-∞,2]上单调递减”,命题q“存在a∈R,使∀x∈R,16x2-16(a-1)x+1≠0”.若命题“p∧q”为真命题,求实数a的取值范围.
解若p为真,则对称轴x=-=在区间(-∞,2]的右侧,即≥2,∴00),q实数x满足20,∴A=(a,4a),
又B=(2,5],则a≤2且4a>5,解得0},则S∩T=( )
A.[2,3] B.(-∞,2]∪[3,+∞)
C.[3,+∞) D.(0,2]∪[3,+∞)
解析选D 由题意知S={x|x≤2或x≥3},则S∩T={x|00,则方程x2+x-m=0有实根”的逆否命题是( )
A.若方程x2+x-m=0有实根,则m>0
B.若方程x2+x-m=0有实根,则m≤0
C.若方程x2+x-m=0没有实根,则m>0
D.若方程x2+x-m=0没有实根,则m≤0
解析选D 根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.
命题点四 含有逻辑联结词的命题
命题指数☆☆☆
难度中、低
题型选择题
1.(2014·辽宁高考)设a,b,c是非零向量,已知命题p若a·b=0,b·c=0,则a·c=0;命题q若a∥b,b∥c,则a∥c.则下列命题中真命题是( )
A.p∨q B.p∧q
C.(綈p)∧(綈q) D.p∨(綈q)
解析选A
如图,若a=A1A―→,b=AB―→,c=B1B―→,则a·c≠0,命题p为假命题;显然命题q为真命题,所以p∨q为真命题.
2.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )
A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
解析选A 綈p甲没有降落在指定范围;綈q乙没有降落在指定范围,
至少有一位学员没有降落在指定范围,即綈p或綈q发生.即为(綈p)∨(綈q).
命题点五 全称量词和存在量词
命题指数☆☆☆
难度低
题型选择题、填空题
1.(2015·全国卷Ⅰ)设命题p∃n∈N,n2>2n,则綈p为( )
A.∀n∈N,n2>2n B.∃n∈N,n2≤2n
C.∀n∈N,n2≤2n D.∃n∈N,n2=2n
解析选C 因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”.
2.(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( )
A.∀x∈R,∃n∈N*,使得n<x2
B.∀x∈R,∀n∈N*,使得n<x2
C.∃x∈R,∃n∈N*,使得n<x2
D.∃x∈R,∀n∈N*,使得n<x2
解析选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.
3.(2015·山东高考)若“∀x∈,tan x≤m”是真命题,则实数m的最小值为________.
解析由题意,原命题等价于tan x≤m在区间上恒成立,即y=tan x在上的最大值小于或等于m,又y=tan x在上的最大值为1,所以m≥1,即m的最小值为1.
答案1