- 163.00 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
空间向量及其运算
【考点梳理】
1.空间向量的有关概念
名称
定义
空间向量
在空间中,具有大小和方向的量
相等向量
方向相同且模相等的向量
相反向量
方向相反且模相等的向量
共线向量
(或平行向量)
表示空间向量的有向线段所在的直线互相平行或重合的向量
共面向量
平行于同一个平面的向量
2.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y, },使得p=xa+yb+ c,其中,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律:
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3=0
模
|a|
夹角
〈a,b〉(a≠0,b≠0)
cos〈a,b〉=
【考点突破】
考点一、空间向量的线性运算
【例1】如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);(2)+.
[解析] (1)因为P是C1D1的中点,所以=++=a++
=a+c+=a+c+b.
(2)因为M是AA1的中点,所以=+
=+
=-a+=a+b+c.
又=+=+
=+=c+a,
所以+=+
=a+b+c.
【类题通法】
1.选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.
2.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则.
【对点训练】
如图,三棱锥O-ABC中,M,N分别是AB,OC的中点,设=a,=b,=c,用a,b,c表示,则=( )
A.(-a+b+c) B.(a+b-c)
C.(a-b+c) D.(-a-b+c)
[答案] B
[解析] =+=(-)+=-+(-)=+-=(a+b-c).
考点二、共线定理、共面定理的应用
【例2】已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,用向量方法求证:
(1)E,F,G,H四点共面;
(2)BD∥平面EFGH.
[解析] (1)连接BG,则=+=+(+)=++=+,由共面向量定理知E,F,G,H四点共面.
(2)因为=-=-=(-)=,因为E,H,B,D四点不共线,所以EH∥BD.
又EH⊂平面EFGH,BD⊄平面EFGH,
所以BD∥平面EFGH.
【类题通法】
1.证明空间三点P,A,B共线的方法
①=λ(λ∈R);
②对空间任一点O,=x+y(x+y=1).
2.证明空间四点P,M,A,B共面的方法
①=x+y;
②对空间任一点O,=x+y+ (x+y+ =1);
③∥(或∥或∥).
3.三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.
【对点训练】
已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足=(++).
(1)判断,,三个向量是否共面;
(2)判断点M是否在平面ABC内.
[解析] (1)由已知++=3,
∴-=(-)+(-).
即=+=--,
∴,,共面.
(2)由(1)知,,共面且过同一点M.
∴四点M,A,B,C共面,
从而点M在平面ABC内.
考点三、空间向量数量积的应用
【例3】如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M,N分别是AB,CD的中点.
(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.
[解析] (1)设=p,=q,=r.
由题意可知,|p|=|q|=|r|=a,且p,q,r三向量两两夹角均为60°.
=-=(+)-=(q+r-p),
∴·=(q+r-p)·p=(q·p+r·p-p2)
=(a2cos 60°+a2cos 60°-a2)=0.
∴⊥,
即MN⊥AB.
同理可证MN⊥CD.
(2)由(1)可知=(q+r-p),
∴||2=(q+r-p)2
=[q2+r2+p2+2(q·r-p·q-r·p)]
=
=×2a2=.
∴||=a.
∴MN的长为a.
(3)设向量与的夹角为θ.
∵=(+)=(q+r),
=-=q-p,
∴·=(q+r)·(q-p)
=(q2-q·p+r·q-r·p)
=(a2-a2cos 60°+a2cos 60°-a2cos 60°)
=(a2-+-)=.
又∵||=||=a,
∴·=||||cos θ=a×a×cos θ=.
∴cos θ=,
∴向量与的夹角的余弦值为,
因此异面直线AN与CM所成角的余弦值为.
【类题通法】
利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.可解决有关垂直、夹角、长度问题.
(1)a≠0,b≠0,a⊥b⇔a·b=0;
(2)|a|=;
(3)cos〈a,b〉=.
【对点训练】
如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.
(1)求AC1的长;
(2)求证:AC1⊥BD;
(3)求BD1与AC夹角的余弦值.
[解析] (1)记=a,=b,=c,
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
∴a·b=b·c=c·a=.
||2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a)
=1+1+1+2×=6,
∴|1|=,
即AC1的长为.
(2)∵=a+b+c,=b-a,
∴·=(a+b+c)·(b-a)
=a·b+|b|2+b·c-|a|2-a·b-a·c
=b·c-a·c
=|b||c|cos 60°-|a||c|cos 60°=0.
∴⊥,
∴AC1⊥BD.
(3)=b+c-a,=a+b,∴||=,||=,
·=(b+c-a)·(a+b)
=b2-a2+a·c+b·c=1.
∴cos〈,〉==.
∴AC与BD1夹角的余弦值为.