- 194.11 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
章末复习
1.复数的概念:(1)虚数单位i;(2)复数的代数形式z=a+bi(a,b∈R);(3)复数的实部、虚部、虚数与纯虚数.
2.复数集
复数a+bi(ab∈R)
3.复数的四则运算,若两个复数z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R)
(1)加法:z1+z2=(a1+a2)+(b1+b2)i;
(2)减法:z1-z2=(a1-a2)+(b1-b2)i;
(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i;
(4)除法:==+i(z2≠0);
(5)实数四则运算的交换律、结合律、分配律都适合于复数的情况;
(6)特殊复数的运算:in(n为正整数)的周期性运算;
(1±i)2=±2i;若ω=-±i,则ω3=1,1+ω+ω2=0.
4.共轭复数与复数的模
(1)若z=a+bi(a,b∈R),则=a-bi,z+为实数,z-为纯虚数(b≠0).
(2)复数z=a+bi(a,b∈R)的模|z|=,
且z·=|z|2=a2+b2.
5.复数的几何形式
(1)用向量表示复数z=a+bi,(a,b∈R),用点Z(a,b)表示复数z=a+bi,(a,b∈R),Z称为z在复平面上的对应点,复数与复平面上的点一一对应(坐标原点对应实数0).
(2)任何一个复数z=a+bi一一对应着复平面内一个点Z(a,b),也一一对应着一个从原点出发的向量.
6.复数加、减法的几何意义
(1)复数加法的几何意义
若复数z1、z2对应的向量、不共线,则复数z1+z2是以、为两邻边的平行四边形的对角线所对应的复数.
(2)复数减法的几何意义
复数z1-z2是连接向量、的终点,并指向Z1的向量所对应的复数.
题型一 分类讨论思想的应用
当复数的实部与虚部含有字母时,利用复数的有关概念进行分类讨论.分别确定什么情况下是实数、虚数、纯虚数.当x+yi没有说明x,y∈R时,也要分情况讨论.
例1 实数k为何值时,复数(1+i)k2-(3+5i)k-2(2+3i)满足下列条件?
(1)是实数;
(2)是虚数;
(3)是纯虚数.
解 (1+i)k2-(3+5i)k-2(2+3i)=(k2-3k-4)+(k2-5k-6)i.
(1)当k2-5k-6=0时,即k=6或k=-1时,该复数为实数.
(2)当k2-5k-6≠0时,即k≠6且k≠-1时,该复数为虚数.
(3)当即k=4时,该复数为纯虚数.
跟踪演练1 当实数a为何值时,z=a2-2a+(a2-3a+2)i.
(1)为实数; (2)为纯虚数;
(3)对应的点在第一象限内;
(4)复数z对应的点在直线x-y=0.
解 (1)z∈R⇔a2-3a+2=0,
解得a=1或a=2.
(2)z为纯虚数,则
即故a=0.
(3)z对应的点在第一象限,则
∴
∴a<0,或a>2.
∴a的取值范围是(-∞,0)∪(2,+∞).
(4)依题设(a2-2a)-(a2-3a+2)=0,
∴a=2.
题型二 数形结合思想的应用
数形结合既是一种重要的数学思想,又是一种常用的数学方法.本章中,复数本身的几何意义、复数的模以及复数加减法的几何意义都是数形结合思想的体现.它们得以相互转化.涉及的主要问题有复数在复平面内对应点的位置、复数运算及模的最值问题等.
例2 已知等腰梯形OABC的顶点A、B在复平面上对应的复数分别为1+2i,-2+6i,OA∥BC.求顶点C所对应的复数z.
解
设z=x+yi,x,y∈R,如图.
∵OA∥BC,|OC|=|BA|,
∴kOA=kBC,|zC|=|zB-zA|,
即
解得或.
∵|OA|≠|BC|,
∴x2=-3,y2=4(舍去),故z=-5.
跟踪演练2 已知复数z1=i(1-i)3.
(1)求|z1|;
(2)若|z|=1,求|z-z1|的最大值.
解 (1)|z1|=|i(1-i)3|=|i|·|1-i|3=2.
(2)如图所示,由|z|=1可知,z在复平面内对应的点的轨迹是半径为1,圆心为O(0,0)的圆,而z1对应着坐标系中的点Z1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆半径)=2+1.
题型三 转化与化归思想的应用
在求复数时,常设复数z=x+yi(x,y∈R),把复数z满足的条件转化为实数x,y满足的条件,即复数问题实数化的基本思想在本章中非常重要.
例3 已知z是复数,z+2i,均为实数,且(z+ai)2的对应点在第一象限,求实数a的取值范围.
解 设z=x+yi(x,y∈R),
则z+2i=x+(y+2)i为实数,∴y=-2.
又==(x-2i)(2+i)
=(2x+2)+(x-4)i为实数,
∴x=4.∴z=4-2i,
又∵(z+ai)2=(4-2i+ai)2=(12+4a-a2)+8(a-2)i在第一象限.
∴,
解得2