• 563.50 KB
  • 2021-06-25 发布

四川省眉山市东坡区多悦高中2019-2020学年高二5月月考(期中)数学(理)试题

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
数学月考试卷(五月)‎ 一、选择题:本大题共12小题.每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为(  )‎ A.100 B.150 C.200 D.250‎ ‎【答案】A ‎【解析】方法一 由题意可得=,解得n=100.‎ 方法二 由题意,得抽样比为=,总体容量为3 500+1 500=5 000,故n=5 000×=100.‎ ‎2.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是(  )‎ A. B. C. D. ‎【答案】C【解析】从A,B中任意取一个数,共有C·C=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∴p==.‎ ‎3.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为(  )‎ A.8 B.24 C.48 D.120‎ ‎【答案】C【解析】末位数字排法有A种,其他位置排法有A种,共有AA=48种.‎ ‎4.从某中学甲、乙两班各随机抽取10名同学,测量他们的身高(单位:cm),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是(  )‎ A.甲班同学身高的方差较大 B.甲班同学身高的平均值较大 C.甲班同学身高的中位数较大 D.甲班同学身高在175 cm以上的人数较多 ‎【答案】A ‎【解析】逐一考查所给的选项:‎ 观察茎叶图可知甲班同学数据波动大,则甲班同学身高的方差较大,A选项正确;‎ 甲班同学身高的平均值为=169.2,‎ 乙班同学身高的平均值为:=171,‎ 则乙班同学身高的平均值大,B选项错误;‎ 甲班同学身高的中位数为=168,乙班同学身高的中位数为=171.5,则乙班同学身高的中位数大,C选项错误;‎ 甲班同学身高在175 cm以上的人数为3人,乙班同学身高在175 cm以上的人数为4人,则乙班同学身高在175 cm以上的人数多,D选项错误.‎ ‎5.函数的最小值为( )‎ A. B. C. D.‎ ‎【答案】C ‎【解析】由题得,,令解得,则当时f(x)为减函数,当时,f(x)为增函数,所以点处的函数值为最小值,代入函数解得,故选C。‎ ‎6.已知函数,,下列结论中正确的是( )‎ A.函数有极小值 B.函数有极大值 C.函数有一个零点 D.函数没有零点 ‎【答案】D ‎【解析】因为,所以,‎ 又,所以,‎ 即函数在上单调递增,且,‎ 故函数无极值,且函数无零点,故选D。‎ ‎7.已知函数的定义域为,导函数在上的图象如图所示,则在 内的极小值点的个数为( ) ‎ A.1 B.2 C.3 D.4‎ ‎【答案】B ‎8.已知函数在处的导数为,则等于( )‎ A. B. C. D.‎ ‎【答案】B ‎【解析】在处的导数为,‎ 所以,故选B.‎ ‎9.如图,是可导函数,直线是曲线在处的切线,令,是的导函数,则( ).‎ A.-1 B.0 C.2 D.4‎ ‎【答案】B ‎【解析】将点代入直线的方程得,得,所以,,‎ 由于点在函数的图象上,则,‎ 对函数求导得,‎ ‎,故选B。‎ ‎10.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是(  )‎ A.9 B.10 C.18 D.20‎ ‎【答案】C ‎【解析】由于lg a-lg b=lg (a>0,b>0),‎ ‎∴lg 有多少个不同的值,只需看不同值的个数.‎ 从1,3,5,7,9中任取两个作为有A种,又与相同,与相同,∴lg a-lg b的不同值的个数有A-2=18.‎ ‎11.已知样本(x1,x2,…,xn)的平均数为,样本(y1,y2,…,ym)的平均数为(≠),若样本(x1,x2,…,xn,y1,y2,…,ym)的平均数=a+(1-a),其中0m ‎ C.n=m D.不能确定 ‎【答案】A ‎【解析】由题意可得=, =,‎ ==·+· ‎=·+·=a+(1-a),‎ 所以=a,=1-a,又00,f(x)单调递增;‎ 当x∈时,f′(x)<0,f(x)单调递减,‎ 故当x=2时,f(x)取得最大值80,则V≤×=4.‎ ‎∴体积最大值为4 cm3.‎ ‎【答案】4 三、解答题:解答应写出文字说明.证明过程或演算步骤.(70分)‎ ‎17.解答下列问题:‎ ‎1.(3分)从2位女生、4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有多少种?‎ ‎2.(3分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成多少个没有重复数字的四位数.‎ ‎3.(4分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有多少种 ‎【答案】‎ ‎1.【解析】法一 可分两种情况:第一种情况,只有1位女生入选,不同的选法有CC=12种;第二种情况,有2位女生入选,不同的选法有CC=4种.根据分类加法计数原理知,至少有1位女生入选的不同的选法有12+4=16种.‎ 法二 从6人中任选3人,不同的选法有C=20种,从6人中任选3人都是男生,不同的选法有C=4种,所以至少有1位女生入选的不同的选法有20-4=16种.‎ ‎2.【解析】若取的4个数字不包括0,则可以组成的四位数的个数为CCA;若取的4个数字包括0,则可以组成的四位数的个数为CCCA.综上,一共可以组成的没有重复数字的四位数的个数为CCA+CCCA=720+540=1 260.‎ ‎3.【解析】因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有=6种,再分配给3个人,有A=6种,所以不同的安排方式共有6×6=36(种). ‎ ‎18.(12分)某网络营销部门随机抽查了某市200名网友在2018年11月11日的网购金额,所得数据如下表:‎ 网购金额(单位:千元)‎ 人数 频率 ‎(0,1]‎ ‎16‎ ‎0.08‎ ‎(1,2]‎ ‎24‎ ‎0.12‎ ‎(2,3]‎ x p ‎(3,4]‎ y q ‎(4,5]‎ ‎16‎ ‎0.08‎ ‎(5,6]‎ ‎14‎ ‎0.07‎ 总计 ‎200‎ ‎1.00‎ 已知网购金额不超过3千元与超过3千元的人数比恰为3∶2.‎ ‎(1)试确定x,y,p,q的值,并补全频率分布直方图(如图);‎ ‎(2)该营销部门为了了解该市网友的购物体验,从这200名网友中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中确定5人进行问卷调查,若需从这5人中随机选取2人继续访谈,则此2人来自不同群体的概率是多少?‎ ‎【解析】(1)根据题意有解得∴p=0.40,q=0.25.‎ 补全频率分布直方图如图所示.‎ ‎(2)根据题意,抽取网购金额在(1,2]内的人数为×5=3(人).‎ 抽取网购金额在(4,5]内的人数为×5=2(人). 故此2人来自不同群体的概率P==.‎ ‎19.(12分)已知函数.‎ ‎(Ⅰ)当曲线在时的切线与直线平行,求曲线在处的切线方程;‎ ‎(Ⅱ)求函数的极值,并求当有极大值且极大值为正数时,实数的取值范围.‎ ‎【答案】(Ⅰ);(Ⅱ).‎ ‎【解析】‎ ‎(Ⅰ),‎ 由,得.‎ 当时,,‎ ‎,‎ 曲线在处的切线方程为,即.‎ ‎(Ⅱ).‎ ‎(1)当时,,所以,在递减,无极值.‎ ‎(2)当时,由得.‎ 随的变化、的变化情况如下:‎ ‎+‎ ‎0‎ ‎-‎ 极大值 故有极大值,无极小值;‎ ‎,由,∵,∴.‎ 所以,当的极大值为正数时,实数的取值范围为。‎ ‎20.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位: m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:‎ 未使用节水龙头50天的日用水量频数分布表 日用 水量 ‎[0,0.1)‎ ‎[0.1,0.2)‎ ‎[0.2,0.3)‎ ‎[0.3,0.4)‎ ‎[0.4,0.5)‎ ‎[0.5,0.6)‎ ‎[0.6,0.7)‎ 频数 ‎1‎ ‎3‎ ‎2‎ ‎4‎ ‎9‎ ‎26‎ ‎5‎ 使用了节水龙头50天的日用水量频数分布表 日用 水量 ‎[0,0.1)‎ ‎[0.1,0.2)‎ ‎[0.2,0.3)‎ ‎[0.3,0.4)‎ ‎[0.4,0.5)‎ ‎[0.5,0.6)‎ ‎(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;‎ ‎ ‎ ‎(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;‎ ‎(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)‎ ‎【解】 (1)‎ ‎(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48.‎ 因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.‎ ‎(3)该家庭未使用节水龙头50天日用水量的平均数为 1=(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.‎ 该家庭使用了节水龙头后50天日用水量的平均数为 2=(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.‎ 估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).‎ ‎21.(12分)已知函数,当时,函数有极大值8. ‎ ‎(Ⅰ)求函数的解析式;‎ ‎(Ⅱ)若不等式在区间上恒成立,求实数的取值范围.‎ ‎【答案】(I)(II)‎ ‎【解析】‎ ‎(I) ‎ ‎∵当时,函数有极大值8‎ ‎∴,解得 ‎ ‎∴所以函数的解析式为. ‎ ‎(II)∵不等式在区间上恒成立 ‎∴在区间上恒成立 ‎ 令,‎ 则由 ‎ 解得,解得 所以当时,单调递增,当时,单调递减 ‎ 所以对,都有,‎ 所以,即实数的取值范围是。‎ ‎22.(12分)已知函数f(x)=ex(ex-a)-a2x,其中参数a≤0.‎ ‎(1)讨论f(x)的单调性;‎ ‎(2)若f(x)≥0,求a的取值范围.‎ ‎【解析】(1)函数f(x)的定义域为(-∞,+∞),且a≤0.‎ f′(x)=2e2x-aex-a2=(2ex+a)(ex-a).‎ ‎①若a=0,则f(x)=e2x,在(-∞,+∞)上单调递增.‎ ‎②若a<0,则由f′(x)=0,得x=ln .‎ 当x∈时,f′(x)<0;‎ 当x∈时,f′(x)>0.‎ 故f(x)在上单调递减,‎ 在区间上单调递增.‎ ‎(2)①当a=0时,f(x)=e2x≥0恒成立.‎ ‎②若a<0,则由(1)得,当x=ln时,f(x)取得最小值,最小值为f=a2,‎ 故当且仅当a2≥0,‎ 即0>a≥-2e时,f(x)≥0.‎ 综上,a的取值范围是[-2e,0].‎