- 57.50 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(十一)大题考法——数列的综合应用及数学归纳法
1.数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
解:(1)∵Sn=2an-a1, ①
∴当n≥2时,Sn-1=2an-1-a1, ②
①-②得,an=2an-2an-1,即an=2an-1.
由a1,a2+1,a3成等差数列,得2(a2+1)=a1+a3,
∴2(2a1+1)=a1+4a1,解得a1=2.
∴数列{an}是首项为2,公比为2的等比数列.
∴an=2n.
(2)∵an=2n,∴Sn=2an-a1=2n+1-2,Sn+1=2n+2-2.
∴bn===.
∴数列{bn}的前n项和
Tn===.
2.(2018·浙江“七彩阳光”联盟联考)已知等比数列{an}为递增数列,且a4=,a3+a5=,设bn=log3(n∈N*).
(1)求数列{bn}的前n项和Sn;
(2)令Tn=b1+b2+b22+…+b2n-1,求使Tn>0成立的最小值n.
解:(1)设等比数列{an}的公比为q,由题意知,两式相除,得=,解得q=3或q=,∵{an}为递增数列,∴q=3,a1=.
∴an=a1qn-1=·3n-1=2·3n-5.
∴bn=log3=n-5,数列{bn}的前n项和Sn==(n2-9n).
(2)Tn=b1+b2+b22+…+b2n-1=(1-5)+(2-5)+(22-5)+…+(2n-1-5)=-5n>0,
即2n>5n+1,
∵24<5×4+1,25>5×5+1,∴nmin=5.
3.已知数列{an}的前n项和为Sn,若an=-3Sn+4,bn=-log2an+1.
(1)求数列{an}的通项公式与数列{bn}的通项公式;
(2)令cn=+,其中n∈N*,若数列{cn}的前n项和为Tn,求Tn.
解:(1)由a1=-3a1+4,得a1=1,
由an=-3Sn+4,知an+1=-3Sn+1+4,
两式相减并化简得an+1=an,
∴an=n-1,bn=-log2an+1=-log2n=2n.
(2)由题意知,cn=+.
令Hn=+++…+, ①
则Hn=++…++, ②
①-②得,Hn=+++…+-=1-.
∴Hn=2-.
又Tn-Hn=++…+=1-+-+…+-=1-=,
∴Tn=Hn+(Tn-Hn)=2-+.
4.(2018·江苏泰州中学模拟)已知数列{an}满足:a1=1,an+1=
(n∈N*),设bn=a2n-1.
(1)求b2,b3,并证明bn+1=2bn+2;
(2)①证明:数列{bn+2}为等比数列;
②若a2k,a2k+1,9+a2k+2成等比数列,求正整数k的值.
解:(1)∵数列{an}满足a1=1,an+1=(n∈N*),bn=a2n-1,
∴b2=a3=2a2=2(a1+1)=4,
b3=a5=2a4=2(a3+1)=10,
同理,bn+1=a2n+1=2a2n=2(a2n-1+1)=2(bn+1)=2bn+2.
(2)①证明:∵b1=a1=1,b1+2≠0,
==2,
∴数列{bn+2}为等比数列.
②由①知bn+2=3×2n-1,
∴bn=3×2n-1-2,
∴a2n-1=3×2n-1-2,
a2n=a2n-1+1=3×2n-1-1,
∵a2k,a2k+1,9+a2k+2成等比数列,
∴(3×2k-2)2=(3×2k-1-1)(3×2k+8),
令2k=t,得(3t-2)2=(3t+8),
整理,得3t2-14t+8=0,
解得t=或t=4,
∵k∈N*,∴2k=4,解得k=2.
5.(2019届高三·浙江五校联考)已知各项均不相等的等差数列{an}的前4项和为14,且a1,a3,a7恰为等比数列{bn}的前3项.
(1)分别求数列{an},{bn}的前n项和Sn,Tn;
(2)设Kn为数列{anbn}的前n项和,若不等式λSnTn≥Kn+n对一切n∈N*恒成立,求实数λ的最小值.
解:(1)设数列{an}的公差为d,
则
解得d=1或d=0(舍去),a1=2,
所以an=n+1,Sn=.
bn=2n,Tn=2n+1-2.
(2)由题意得Kn=2×21+3×22+…+(n+1)×2n,①
则2Kn=2×22+3×23+…+n×2n+(n+1)×2n+1,②
①-②得-Kn=2×21+22+23+…+2n-(n+1)×2n+1,∴Kn=n×2n+1.
要使λSnTn≥Kn+n对一切n∈N*恒成立,
即λ≥=恒成立,
设g(n)=,
因为==<<1,
所以g(n)随n的增加而减小,所以g(n)max=g(1)=,所以当λ≥时不等式恒成立,
因此λ的最小值为.
6.已知在数列{an}中,a1=,an+1=a-2an+2,n∈N*,其前n项和为Sn.
(1)求证:1,当n≥3时,<1,
又1n.
由an≤=1+<1+,
得Sn<++…+=n+=n+2