• 271.00 KB
  • 2021-06-30 发布

高中数学:3_2 直线的方程 单元测试

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎3. 2 直线的方程 单元测试 ‎1. 下列命题中正确的是: ( )‎ ‎ A、经过点P0(x0, y0)的直线都可以用方程y-y0=k(x-x0)表示 ‎ B、经过定点A(0, b)的直线都可以用方程y=kx+b表示 ‎ C、经过任意两个不同点P1(x1, y1), P2(x2, y2)的直线都可用方程 ‎(x2-x1)(y-y1)=(y2-y1)(x-x1)表示 ‎ D、不经过原点的直线都可以用方程表示 ‎2. 直线xcosα+ysinα+1=0,α的倾斜角为( )‎ ‎ A α B -α C -α D +α ‎3. 以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是(  )‎ A.3x-y-8=0 B .3x+y+4=‎0 ‎ C. 3x-y+6=0 D. 3x+y+2=0‎ ‎4.方程表示的直线( )‎ A.恒过(-2, 3) B. 恒过(2, 3) C. 恒过(-2, 3)或(2, 3) D.都是平行直线 ‎ ‎5. 过点M(2, 1)的直线与x轴,y轴分别交于P,Q两点,且|MP|=|MQ|,则l的方程是(  )‎ A. x-2y+3=0 B. 2x-y-3=‎0 ‎‎ ‎C .2x+y-5=0 D. x+2y-4=0 ‎ ‎6. 直线2x+y+m=0和x+2y+n=0的位置关系是(  ) ‎ A.平行 B.垂直 C.相交但不垂直 D.不能确定 ‎7.把直线l1: x+3y-1=0沿轴负方向平移1个单位后得到直线l2,又直线l与直线l2关于轴对称,那么直线l的方程是( )‎ A. x-3y+2=0 B. x-3y-4=‎0 ‎‎ ‎C. x-3y-2=0 D. x-3y+4=0‎ O x y x O y O x y O x y ‎8. 如图,直线的图象可能是( )‎ ‎ ‎ ‎ A B C D ‎ ‎9.设A、B两点是轴上的点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则PB的方程为 ( )‎ ‎ A.x+y-5=0 B.2x-y-1=‎0 ‎‎ ‎C.2 y-x-4=0 D.2x+y-7=0‎ ‎10.过点P(1,-2),且在两坐标轴上截距的绝对值相等的直线有( )‎ A.4条 B.3条 C.2条 D.1条 ‎ ‎11. 直线l1, l2在x轴上的截距都是m,在y轴上的截距都是n,则l1, l2满足( )‎ A.平行 B.重合 C.平行或重合 D.相交或重合 ‎12. 已知直线l1的方程为y=x,直线l2的方程为ax-y=0(a为实数).当直线l1与直线l2‎ 的夹角在(0,)之间变动时,的取值范围是( ) ‎ A.(, 1)∪(1,) B.(, ) C.(0,1) D.(1,)‎ ‎13 . 将直线y=x+-1绕它上面一点(1,)沿逆时针方向旋转15°,则所得直线方程为 . ‎ ‎14.一直线过点(-3,4),并且在两坐标轴上截距之和为12,这条直线方程是_____ _____. ‎ ‎15. 直线ax-6y-‎12a=0(a≠0)在x轴上的截距是它在y轴上的截距的3倍,则a等于 . ‎ ‎16.原点O在直线l上的射影为点H(-2, 1),则直线l的方程为 . ‎ ‎17.若方程表示两条直线,则的取值是 . ‎ ‎18. 不论a, b为何实数,直线(‎2a+b)x+(a+b)y+a-b=0均通过一定点,此定点坐标是 .‎ ‎19. ①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程; ‎ ‎②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是的直线的方程. ‎ ‎③求过直线和的交点,且垂直于直线的直线方程.‎ ‎20. 在直线方程y=kx+b中,当x∈[-3,4]时,y∈[-8,13],求此直线的方程 ‎21. 已知直线被两平行直线所截得的线段长为3,且直线过点(1,0),求直线的方程.‎ ‎22.过点作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.‎ ‎ ‎ ‎23. 设不等式2x-1>m(x2-1)对一切满足|m|≤2的值均成立,求x的范围.‎ ‎ ‎ ‎3.2 直线方程 参考答案 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答案 C D B A D C A ‎ A A B D A ‎13. y= x ‎ ‎14. 或 ‎ ‎15. -2‎ ‎16. 2x-y+5=0; ‎ ‎17. ‎ ‎18. (-2, 3)‎ ‎19. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0.‎ ‎(3)解:由方程组,解得,所以交点坐标为.‎ 又因为直线斜率为, 所以求得直线方程为27x+54y+37=0.‎ ‎20. y=-3x+4; y=3x+1‎ ‎21. x=1或3x-4y-3=0.‎ ‎22. 分析:直线l应满足的两个条件是 ‎ (1)直线l过点(-5, -4);(2)直线l与两坐标轴相交且与两轴所围成的三角形面积为5.‎ ‎ 如果设a,b分别表示l在x轴,y轴上的截距,则有.‎ ‎ 这样就有如下两种不同的解题思路:‎ ‎ 第一,利用条件(1)设出直线l的方程(点斜式),利用条件(2)确定;‎ ‎ 第二,利用条件(2)设出直线l的方程(截距式),结合条件(1)确定a,b的值.‎ ‎ 解法一:设直线l的方程为分别令,‎ 得l在x轴,y轴上的截距为:,‎ 由条件(2)得 ‎ 得无实数解;或,解得 ‎ 故所求的直线方程为:或 ‎ 解法二:设l的方程为,因为l经过点,则有:‎ ‎ ① 又②‎ ‎ 联立①、②,得方程组 解得或因此,所求直线方程为:或.‎ ‎23.解析:原不等式变为(x2-1)m+(1-2x)<0,构造线段f(m)=(x2-1)m+1-2x,-2≤m≤2,则f(-2)<0,且f(2)<0.‎ 答案: ‎

相关文档