- 2.42 MB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012高考真题分类汇编:圆锥曲线
一、解答题
1、【2012高考真题全国卷理21】
已知抛物线C:y=(x+1)2与圆M:(x-1)2+()2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.
2、【2012高考真题重庆理20】
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段 的中点分别为,且△ 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过 做直线交椭圆于P,Q两点,使,求直线的方程
3、【2012高考真题四川理21】
如图,动点到两定点、构成,且,设动点的轨迹为。
(Ⅰ)求轨迹的方程;
(Ⅱ)设直线与轴交于点,与轨迹相交于点,且,求
的取值范围。
4、【2012高考真题新课标理20】
设抛物线的焦点为,准线为,,已知以为圆心,
为半径的圆交于两点;
(1)若,的面积为;求的值及圆的方程;
(2)若三点在同一直线上,直线与平行,且与只有一个公共点,
求坐标原点到距离的比值.
5、【2012高考真题福建理19】如图,椭圆E:的左焦点为F1,右焦点为F2,离心率.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
6、【2012高考真题上海理22】(4+6+6=16分)在平面直角坐标系中,已知双曲线:
.
(1)过的左顶点引的一条渐进线的平行线,求该直线与另一条渐进线及轴围成的三角形的面积;
(2)设斜率为1的直线交于、两点,若与圆相切,求证:;
(3)设椭圆:,若、分别是、上的动点,且,求证:到直线的距离是定值.
7、【2012高考真题陕西理19】
已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率。
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和上,,求直线的方程。
8、【2012高考真题广东理20】
在平面直角坐标系xOy中,已知椭圆C1:的离心率e=,且椭圆C上的点到Q(0,2)的距离的最大值为3.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由.
9、【2012高考真题江西理21】
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足.
(1) 求曲线C的方程;
(2) 动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△
PDE的面积之比是常数?若存在,求t的值。若不存在,说明理由。
10、【2012高考真题北京理19】
11、【2012高考真题天津理19】
设椭圆的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(Ⅰ)若直线AP与BP的斜率之积为,求椭圆的离心率;
(Ⅱ)若|AP|=|OA|,证明直线OP的斜率k满足
12、【2012高考真题湖南理21】[www.z%zstep.co*~&m^]
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
13、【2012高考江苏19】如图,在平面直角坐标系中,椭圆的左、右焦点分别为,.已知和都在椭圆上,其中为椭圆的离心率.
(1)求椭圆的方程;
(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P.
(i)若,求直线的斜率;
(ii)求证:是定值.
14、【2012高考真题浙江理21】如图,椭圆C:(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 求ABP的面积取最大时直线l的方程.
15、【2012高考真题辽宁理20】
如图,椭圆:,a,b为常数),动圆,。点分别为的左,右顶点,与相交于A,B,C,D四点。
(Ⅰ)求直线与直线交点M的轨迹方程;
(Ⅱ)设动圆与相交于四点,其中,
。若矩形与矩形的面积相等,证明:为定值。
16、【2012高考真题湖北理】
设是单位圆上的任意一点,是过点与轴垂直的直线,是直线与 轴的交点,点在直线上,且满足. 当点在圆上运动时,记点M的轨迹为曲线.
(Ⅰ)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标;
(Ⅱ)过原点且斜率为的直线交曲线于,两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,使得对任意的,都有?若存在,求的值;若不存在,请说明理由.
17、【2012高考真题山东理21】
在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;
(Ⅲ)若点的横坐标为,直线与抛物线有两个不同的交点,与圆有两个不同的交点,求当时,的最小值.
以下是答案
一、解答题
1、
2、
3、
4、(1)由对称性知:是等腰直角,斜边
点到准线的距离
圆的方程为
(2)由对称性设,则
点关于点对称得:
得:,直线
切点
直线
坐标原点到距离的比值为.
5、
6、
过点A与渐近线平行的直线方程为
,,则到直线的距离为.
设到直线的距离为.
7、
8、
9、
10、解:(1)原曲线方程可化简得:
由题意可得:,解得:
(2)由已知直线代入椭圆方程化简得:,
,解得:
由韦达定理得:①,,②
设,,
方程为:,则,
,,
欲证三点共线,只需证,共线
即成立,化简得:
将①②代入易知等式成立,则三点共线得证。
11、
12、(Ⅰ)解法1 :设M的坐标为,由已知得
,
易知圆上的点位于直线的右侧.于是,所以
.
化简得曲线的方程为.
解法2 :由题设知,曲线上任意一点M到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.
(Ⅱ)当点P在直线上运动时,P的坐标为,又,则过P且与圆
相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是
整理得
①
设过P所作的两条切线的斜率分别为,则是方程①的两个实根,故
②
由得 ③
设四点A,B,C,D的纵坐标分别为,则是方程③的两个实根,所以
④
同理可得
⑤
于是由②,④,⑤三式得
.
所以,当P在直线上运动时,四点A,B,C,D的纵坐标之积为定值6400.
【解析】
【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到四点纵坐标之积为定值,体现“设而不求”思想.
13、解:(1)由题设知,,由点在椭圆上,得
,∴。
由点在椭圆上,得
∴椭圆的方程为。
(2)由(1)得,,又∵∥,
∴设、的方程分别为,。
∴。
∴。①
同理,。②
(i)由①②得,。解得=2。
∵注意到,∴。
∴直线的斜率为。
(ii)证明:∵∥,∴,即。
∴。
由点在椭圆上知,,∴。
同理。。
∴
由①②得,,,
∴。
∴是定值。
14、(Ⅰ)由题:; (1)
左焦点(﹣c,0)到点P(2,1)的距离为:. (2)
由(1) (2)可解得:.
∴所求椭圆C的方程为:.
(Ⅱ)易得直线OP的方程:y=x,设A(xA,yA),B(xB,yB),R(x0,y0).其中y0=x0.
∵A,B在椭圆上,
∴.
设直线AB的方程为l:y=﹣(m≠0),
代入椭圆:.
显然.
∴﹣<m<且m≠0.
由上又有:=m,=.
∴|AB|=||==.
∵点P(2,1)到直线l的距离表示为:.
∴SABP=d|AB|=|m+2|,
当|m+2|=,即m=﹣3 或m=0(舍去)时,(SABP)max=.
此时直线l的方程y=﹣.
15、
16、(Ⅰ)如图1,设,,则由,
可得,,所以,. ①
因为点在单位圆上运动,所以. ②
将①式代入②式即得所求曲线的方程为.
因为,所以
当时,曲线是焦点在轴上的椭圆,
两焦点坐标分别为,;
当时,曲线是焦点在轴上的椭圆,
两焦点坐标分别为,.
(Ⅱ)解法1:如图2、3,,设,,则,,
直线的方程为,将其代入椭圆的方程并整理可得
.
依题意可知此方程的两根为,,于是由韦达定理可得
,即.
因为点H在直线QN上,所以.
于是,.
而等价于,
即,又,得,
故存在,使得在其对应的椭圆上,对任意的,都有.
图2
图3
图1
O D x
y
A
M
第21题解答图
解法2:如图2、3,,设,,则,,
因为,两点在椭圆上,所以 两式相减可得
. ③
依题意,由点在第一象限可知,点也在第一象限,且,不重合,
故. 于是由③式可得
. ④
又,,三点共线,所以,即.
于是由④式可得.
而等价于,即,又,得,
故存在,使得在其对应的椭圆上,对任意的,都有.
17、