- 66.00 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
板块命题点专练(七) 简单的三角恒等变换及解三角形
命题点一 简单的三角恒等变换
1.(2018·全国卷Ⅲ)若sin α=,则cos 2α=( )
A. B.
C.- D.-
解析:选B ∵sin α=,∴cos 2α=1-2sin2α=1-2×2=.故选B.
2.(2016·全国卷Ⅱ)若cos=,则sin 2α=( )
A. B.
C.- D.-
解析:选D 因为cos=,
所以sin 2α=cos=cos
=2cos2-1=2×-1=-.
3.(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.
解析:∵sin α+cos β=1, ①
cos α+sin β=0, ②
∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,
∴sin αcos β+cos αsin β=-,
∴sin(α+β)=-.
答案:-
4.(2016·全国卷Ⅰ)已知θ是第四象限角,且sin=,则tan=________.
解析:由题意知sin=,θ是第四象限角,
所以cos>0,
所以cos= =.
tan=tan
=-
=-
=-×=-.
答案:-
5.(2017·江苏高考)若tan=,则tan α=________.
解析:tan α=tan
===.
答案:
6.(2018·江苏高考)已知α,β为锐角,tan α=,cos(α+β)=-.
(1)求cos 2α的值;
(2)求tan(α-β)的值.
解:(1)因为tan α==,
所以sin α=cos α .
因为sin2α+cos2α=1,
所以cos2α=,
所以cos 2α=2cos2α-1=-.
(2)因为α,β 为锐角,所以α+β∈(0,π).
又因为cos(α+β)=-,
所以sin(α+β)==,
所以tan(α+β)=-2.
因为tan α=,
所以 tan 2α==-.
所以tan(α-β)=tan[2α-(α+β)]
==-.
命题点二 解三角形
1.(2018·全国卷Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=( )
A.4 B.
C. D.2
解析:选A ∵cos=,
∴cos C=2cos2-1=2×2-1=-.
在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos C=52+12-2×5×1×
=32,
∴AB=4.
2.(2018·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )
A. B.
C. D.
解析:选C ∵S=absin C===abcos C,∴sin C=cos C,
即tan C=1.
∵C∈(0,π),∴C=.
3.(2018·北京高考)若△ABC的面积为(a2+c2-b2),且∠C为钝角,则∠B=________;
eq f(c,a)的取值范围是________.
解析:由余弦定理得cos B=,
∴a2+c2-b2=2accos B.
又∵S=(a2+c2-b2),
∴acsin B=×2accos B,
∴tan B=,
∵B∈,∴∠B=.
又∵∠C为钝角,∴∠C=-∠A>,
∴0<∠A<.
由正弦定理得=
==+·.
∵0<tan A<,∴>,
∴>+×=2,
即的取值范围是(2,+∞).
答案: (2,+∞)
4.(2018·浙江高考)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=__________,c=__________.
解析:由正弦定理=,
得sin B=·sin A=×=.
由余弦定理a2=b2+c2-2bccos A,
得7=4+c2-4c×cos 60°,
即c2-2c-3=0,解得c=3或c=-1(舍去).
答案: 3
5.(2017·浙江高考)已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是________,cos∠BDC=________.
解析:在△ABC中,AB=AC=4,BC=2,由余弦定理得cos∠ABC===,
则sin∠ABC=sin∠CBD=,
所以S△BDC=BD·BCsin∠CBD=×2×2×=.
因为BD=BC=2,所以∠BDC=∠ABC,
则cos∠BDC= =.
答案:
6.(2017·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为.
(1)求sin Bsin C;
(2)若6cos Bcos C=1,a=3,求△ABC的周长.
解:(1)由题设得acsin B=,
即csin B=.
由正弦定理得sin Csin B=.
故sin Bsin C=.
(2)由题设及(1)得cos Bcos C-sin Bsin C=-,
即cos(B+C)=-.
所以B+C=,故A=.
由题设得bcsin A=,即bc=8.
由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,
得b+c=.
故△ABC的周长为3+.
7.(2018·全国卷Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.
(1)求cos ∠ADB;
(2)若DC=2,求BC.
解:(1)在△ABD中,由正弦定理,得=,
即=,所以sin ∠ADB=.
由题设知,∠ADB<90°,
所以cos ∠ADB= =.
(2)由题设及(1)知,cos ∠BDC=sin ∠ADB=.
在△BCD中,由余弦定理,得
BC2=BD2+DC2-2BD·DC·cos ∠BDC
=25+8-2×5×2×=25,
所以BC=5.
8.(2016·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acos B.
(1)证明:A=2B;
(2)若△ABC的面积S=,求角A的大小.
解:(1)证明:由正弦定理得sin B+sin C=2sin Acos B,
故2sin Acos B=sin B+sin(A+B)
=sin B+sin Acos B+cos Asin B,
于是 sin B=sin(A-B).
又A,B∈(0,π),故0<A-B<π,
所以B=π-(A-B)或B=A-B,
因此A=π(舍去)或A=2B,所以A=2B.
(2)由S=得absin C=,
故有sin Bsin C=sin A= sin 2B=sin Bcos B.
因为 sin B≠0,所以 sin C=cos B.
又B,C∈(0,π),所以C=±B.
当B+C=时,A=;
当C-B=时,A=.
综上,A=或A=.
命题点三 三角函数与解三角形的综合问题
1.(2018·北京高考)在△ABC中,a=7,b=8,cos B=-.
(1)求∠A;
(2)求AC边上的高.
解:(1)在△ABC中,因为cos B=-,
所以sin B==.
由正弦定理得sin A==.
由题设知<∠B<π,所以0<∠A<.
所以∠A=.
(2)在△ABC中,
因为sin C=sin(A+B)=sin Acos B+cos Asin B=×+×=,
所以AC边上的高为asin C=7×=.
2.(2018·天津高考)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsin A=acos.
(1)求角B的大小;
(2)设a=2,c=3,求b和sin(2A-B)的值.
解:(1)在△ABC中,
由正弦定理=,可得bsin A=asin B.
又因为bsin A=acos,
所以asin B=acos,
即sin B=cos B+sin B,
所以tan B=.
因为B∈(0,π),所以B=.
(2)在△ABC中,由余弦定理及a=2,c=3,B=,
得b2=a2+c2-2accos B=7,故b=.
由bsin A=acos,可得sin A=.
因为a<c,所以cos A=.
所以sin 2A=2sin Acos A=,
cos 2A=2cos2A-1=.
所以sin(2A-B)=sin 2Acos B-cos 2Asin B
=×-×=.
3.(2015·山东高考)设f(x)=sin xcos x-cos2.
(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.
解:(1)由题意知f(x)=-
=-=sin 2x-.
由-+2kπ≤2x≤+2kπ,k∈Z,
可得-+kπ≤x≤+kπ,k∈Z;
由+2kπ≤2x≤+2kπ,k∈Z,
可得+kπ≤x≤+kπ,k∈Z.
所以f(x)的单调递增区间是(k∈Z);
单调递减区间是(k∈Z).
(2)由f=sin A-=0,得sin A=,
由题意知A为锐角,所以cos A=.
由余弦定理a2=b2+c2-2bccos A,
可得1+bc=b2+c2≥2bc,
即bc≤2+,
当且仅当b=c时等号成立.
因此bcsin A≤.
所以△ABC面积的最大值为.