- 1.37 MB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题六 概率与统计、算法、复数、推理与证明
第一讲 排列、组合与二项式定理
高考导航
1.考查排列、组合的实际应用.
2.考查二项式系数、常数项、二项式指定项的求解.
1.(2016·全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12 D.9
[解析] 由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,共有6×3=18种走法,故选B.
[答案] B
2.(2017·全国卷Ⅰ)(1+x)6展开式中x2的系数为( )
A.15 B.20
C.30 D.35
[解析] 对于(1+x)6,若要得到x2项,可以在中选取1,此时(1+x)6中要选取含x2的项,则系数为C;当在中选取时,(1+x)6中要选取含x4的项,即系数为C,所以,展开式中x2项的系数为C+C=30,故选C.
[答案] C
3.(2015·湖北卷)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )
A.212 B.211
C.210 D.29
[解析] ∵(1+x)n的展开式中第4项与第8项的二项式系数分别为C,C,∴C=C,得n=10.
对(1+x)10,
令x=1,得(1+1)10=C+C+C+C+…+C=210,①
令x=-1,得(1-1)10=C-C+C-…+C=0,②
利用①+②可得2×(C+C+…+C)=210,
∴奇数项的二项式系数和为C+C+…+C=29.
[答案] D
4.(2015·全国卷Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为( )
A.10 B.20
C.30 D.60
[解析] (x2+x+y)5=[(x2+x)+y]5的展开式中只有C(x2+x)3y2中含x5y2,易知x5y2的系数为CC=30,故选C.
[答案] C
5.(2017·天津卷)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)
[解析] 分两类:
①有一个数字是偶数的四位数有CCA=960个.
②没有偶数的四位数有A=120个.
故这样的四位数一共有960+120=1080个.
[答案] 1080
考点一 两个计数原理
分类加法计数原理和分步乘法计数原理
如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.
[对点训练]
1.已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有元素的和大于B中所有元素的和,则集合A,B共有( )
A.12对 B.15对
C.18对 D.20对
[解析] 依题意,当A,B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有C+C+2=8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A,B
均有两个元素时,有3对.所以共有3+8+3+3+3=20对,选D.
[答案] D
2.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )
A.12种 B.18种
C.24种 D.36种
[解析] 第一步:将4项工作分成3组,共有C种分法.
第二步:将3组工作分配给3名志愿者,共有A种分配方法,故共有C·A=36种安排方式,故选D.
[答案] D
3.如果一个三位正整数“a1a2a3”满足a1