- 487.50 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
数学试卷
一.选择题:本大题共12小题,每小题5分,共60分.
1.某影院有60排座位,每排70个座号,一次报告会坐满了听众,会后留下座号为15的所有听众60人进行座谈,这是运用了
A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法
2.设命题P:nN,>,则P为
A.nN,> B.nN,≤ C.nN,≤ D.nN,=
3.设随机变量,则等于
A. B. C. D.
4.投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
A. 0.648 B. 0.432 C. 0.36 D. 0.312
5.有2位同学报名参加5个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有
A.10种 B.20种 C.25种 D.32种
6.为研究变量和的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程和,两人计算知相同,也相同,下列正确的是
A.与重合 B.与一定平行 C.与相交于点 D.无法判断和是否相交
7.
从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为,,则
A. , B. ,
C. , D. ,
8.设,那么的值为
A. - B.- C.- D.-1
9.若随机变量服从正态分布,则,.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为
A. B. C. D.
10.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为
A. B. C. D. .
11.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
加油时间
加油量(升)
加油时的累计里程(千米)
年月日
年月日
注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每千米平均耗油量为
A.升 B.升 C.升 D.升
12.从6双不同颜色的手套中任取4只,其中恰好只有一双同色的取法有
A.240种 B.180种 C.120种 D.60种
二.填空题:本大题共4小题,每小题5分,共20分.
13.若,,则 .
14.用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一种颜色,相邻部分涂不同颜色,则涂色的方法共有 种.
15.的展开式中,的系数是 .
16.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,是的必要条件。现有下列命题:
①是的充要条件;
②是的充分条件而不是必要条件;
③是的必要条件而不是充分条件;
④是的必要条件而不是充分条件;
⑤是的充分条件而不是必要条件.
则正确命题序号是 .
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分10分)
已知命题p:方程x2+mx+1=0有两个不等的负实根,命题q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假。求实数m的取值范围.
18.(本小题满分12分)六人站成一排,求:
(1)甲不在排头,乙不在排尾的排列数;
(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数.
19. (本小题满分12分)若展开式中第二、三、四项的二项式系数成等差数列.
(1)求n的值;
(2)此展开式中是否有常数项,为什么?
20. (本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量)
频数(个)
5
10
20
15
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
21. (本小题满分12分)设某校新、老校区之间开车单程所需时间为,只与道路畅通状况有关,对其容量为的样本进行统计,结果如下:
(分钟)
25
30
35
40
频数(次)
20
30
40
10
(1)求的分布列与数学期望;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
22.(本小题满分12分)某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:
①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;
②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
③每位参加者按问题A、B、C、D顺序作答,直至答题结束.
假设甲同学对问题A、B、C、D回答正确的概率依次为,,,,且各题回答正确与否相互之间没有影响.
(1)求甲同学能进入下一轮的概率;
(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Eξ.
数学参考答案
一.1-5 CCAAC 6-10 CBABD 11-12 BA
二.13. 14. 240 15.207 16.①②④
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分10分)已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q 为真,p且q为假。求实数m的取值范围.
解:由题意p,q中有且仅有一为真,一为假,
p真m>2,q真<01