• 73.79 KB
  • 2021-06-30 发布

专题11-8 不等式选讲(练)-2018年高考数学一轮复习讲练测(江苏版)

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ ‎1. 在实数范围内,不等式||x-2|-1|≤1的解集为________.‎ ‎【答案】[0,4]‎ ‎【解析】依题意得-1≤|x-2|-1≤1,即|x-2|≤2,解得0≤x≤4.‎ ‎2. 若关于实数x的不等式|x-5|+|x+3|b>0),则利用柯西不等式判断a2+b2与(x+y)2的大小关系为________. ‎ ‎【答案】a2+b2≥(x+y)2‎ ‎【解析】∵+=1,‎ ‎∴a2+b2=(a2+b2)≥2‎ ‎=(x+y)2.‎ ‎ 5. 已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.‎ ‎【答案】2‎ ‎【解析】(am+bn)(bm+an)=ab(m2+n2)+mn(a2+b2)≥2abmn+mn(a2+b2)=4ab+2(a2+b2)=2(2ab+a2+b2)=2(a+b)2=2(当且仅当m=n=时取等号).‎ ‎ 6. 已知函数f(x)=|x-2|,g(x)=-|x+3|+m.若函数f(x)的图像恒在函数g(x)图像的上方,则m的取值范围为________.‎ ‎【答案】(-∞,5)‎ ‎【解析】函数f(x)的图像恒在函数g(x)图像的上方,即为|x-2|>-|x+3|+m对任意实数x恒成立,即 ‎|x-2|+|x+3|>m恒成立.因为对任意实数x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,所以m<5,即m的取值范围是(-∞,5).‎ ‎7. 已知实数t,若存在t∈[,3]使得不等式|t-1|-|2t-5|≥|x-1|+|x-2|成立,求实数x的取值范围.‎ ‎【答案】[,].‎ ‎【解析】解:∵t∈[,3],∴|t-1|-|2t-5|= 可得其最大值为.‎ ‎∴只需解不等式|x-1|+|x-2|≤即可,当x≥2时,可解得2≤x≤,当1