- 178.36 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一、选择题
1.【函数导数与极值】【2016,四川文科】已知函数的极小值点,则=( )
A.-4 B. -2 C.4 D.2
【答案】D
2.【导数的应用】【2015,福建,文12】“对任意,”是“”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
【答案】B
二、非选择题
3. 【应用导数研究函数的单调性、极值,分类讨论思想】【2016,山东文数】
设f(x)=xlnx–ax2+(2a–1)x,a∈R.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
【答案】(Ⅰ)当时,函数单调递增区间为;
当时,函数单调递增区间为,单调递减区间为.
(Ⅱ).
4. 【函数的单调性与最值、分段函数】【2016,浙江文数】
设函数=,.证明:
(I);
(II).
【答案】略
5. 【导数的运算,利用导数判断函数的单调性,利用导数求函数的极值、函数零点问题】【2015,北京,文】设函数,.
(I)求的单调区间和极值;
(II)证明:若存在零点,则在区间上仅有一个零点.
【答案】(I)单调递减区间是,单调递增区间是;极小值;(II)略.
6. 【导数与极值,导数与单调性】【2015,重庆,文19】已知函数()在x=处取得极值.
(Ⅰ)确定的值,
(Ⅱ)若,讨论的单调性.
【答案】(Ⅰ),(Ⅱ)在内为减函数,内为增函数..
7. 【函数的定义域,利用导数求函数的单调性、极值】【2015,安徽,文21】
已知函数
(Ⅰ)求的定义域,并讨论的单调性;
(Ⅱ)若,求在内的极值.
【答案】(Ⅰ)递增区间是(-r,r);递减区间为(-∞,-r)和(r,+∞);(Ⅱ)极大值为100;无极小值.
8. 【导数在研究函数性质方面的应用,分类讨论思想】【2015新课标2文21】已知.
(I)讨论的单调性;
(II)当有最大值,且最大值大于时,求a的取值范围.
【答案】(I),在是单调递增;,在单调递增,在单调递减;(II).
2017年真题
【利用导数研究函数单调性、极值及零点】【2017江苏,20】
已知函数有极值,且导函数的极值点是的零点.(极值点是指函数取极值时对应的自变量的值)
(1)求关于的函数关系式,并写出定义域;
(2)证明:;
(3)若,这两个函数的所有极值之和不小于,求的取值范围.
【答案】(1)(2)见解析(3)
所以,又,故.
因为有极值,故有实根,从而,即.
时,,故在R上是增函数,没有极值;
时,有两个相异的实根,.
列表如下
x
+
0
–
0
+
极大值
极小值
故的极值点是.
从而,
因此,定义域为.
(2)由(1)知,.
设,则.
当时,,从而在上单调递增.
因为,所以,故,即.
因此.
记,所有极值之和为,
因为的极值为,所以,.
因为,于是在上单调递减.
因为,于是,故.
因此a的取值范围为.
【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.