- 381.65 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一、填空题
1.不等式对于一切非零实数均成立,则实数的取值范围是 .
【答案】
【解析】
试题分析:与同号,(当且仅当时取“”),解得,故答案为.
考点:1、绝对值不等式的解法;2、基本不等式求最值及不等式恒成立问题.
2.已知,若恒成,求的取值范围__________.
【答案】
3.若不等式在上恒成立,则实数的取值范围为_________.
【答案】
【解析】
试题分析:在上恒成立, 在上不成立,由在上恒成立得.
考点:含绝对值不等式的恒成立问题.
4.若存在实数使成立,则实数的取值范围是________.
【答案】
【解析】试题分析:本题的几何意义是:存在在数轴上到的距离与到的距离之和小于的点.有
, .
考点:含绝对值的不等式的解法.
【易错点晴】本题主要考查了含绝对值不等式的解法.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如或,利用实数绝对值的几何意义求解较简便.选择或填空题可采用绝对值几何意义的方法,解答题要采用零点分段求解的方法.本题难度不大,属于中档题.
5.已知关于的不等式无解,实数的取值范围__________.
【答案】
6.已知函数.若的解集包含,则实数的取值范围为__________.
【答案】
【解析】f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|
⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,
即-3≤a≤0.故满足条件的a的取值范围为.
7.若适合不等式的的最大值为3,则实数的值为_______.
【答案】8
【解析】因为x的最大值为3,故x﹣3<0,
原不等式等价于|x2﹣4x+k|﹣x+3≤5,
即﹣x﹣2≤x2﹣4x+k≤x+2,
则 x2﹣5x+k﹣2≤0且x2﹣3x+k+2≥0解的最大值为3,
设 x2﹣5x+k﹣2=0 的根分别为x1和x2,x1<x2,
x2﹣3x+k+2=0的根分别为x3和 x4,x3<x4.
则x2=3,或 x4=3.
若x2=3,则9﹣15+k﹣2=0,k=8,
若x4=3,则9﹣9+k+2=0,k=﹣2.
当k=﹣2时,原不等式无解,
检验得:k=8 符合题意,
故答案为:8.
8.存在使不等式成立,则的取值范围是_____
【答案】
【解析】由题意得
9.已知函数的最小值是2,则的值是________,不等式的解集是________.
【答案】 3
【点睛】与简单的绝对值有关的问题,可用绝对值三角不等式得出最小值,要注意等号成立的条件,解绝对值不等式可利用绝对值的定义去绝对值符号,化为不含绝对值的不等式分类求解.
10.若关于的不等式且恒成立则的取值范围是_________.
【答案】
【解析】关于x的不等式loga(|x−2|+|x+a|)>2(a>0且a≠1)恒成立,
即有当a>1时,可得|x−2|+|x+a|>a2恒成立,
由|x−2|+|x+a|⩾|x−2−x−a|=|2+a|=2+a,当(x−2)(x+a)⩾0时,取得等号,
即有a2<2+a,解得−1