- 2.00 MB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题35 线性规划求解技巧
一.【学习目标】
1.会从实际情境中抽象出二元一次不等式组,了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
2.掌握确定平面区域的方法;理解目标函数的几何意义,注意线性规划问题与其他知识的综合.
二.【知识要点】
1.二元一次不等式表示的平面区域
(1)二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面),不包括边界直线.
不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.
(2)在平面直角坐标系中,设直线Ax+By+C=0(B不为0)及点P(x0,y0),则
①若B>0,Ax0+By0+C>0,则点P(x0,y0)在直线的上方,此时不等式Ax+By+C>0表示直线Ax+By+C=0的上方的区域.
②若B>0,Ax0+By0+C<0,则点P在直线的下方,此时不等式Ax+By+C<0表示直线Ax+By+C=0的下方的区域.
③若是二元一次不等式组,则其平面区域是所有平面区域的公共部分.
2.线性规划相关概念
名称
意义
约束条件
目标函数中的变量所要满足的不等式组
线性约束
条件
由x,y的一次不等式(或方程)组成的不等式组
目标函数
关于x,y的函数解析式
可行解
满足线性约束条件的解
可行域
所有可行解组成的集合
线性目标函数
目标函数是关于变量的一次函数
最优解
使目标函数取得最大或最小值的可行解
线性规划问题
在线性约束条件下,求线性目标函数的最大值或最小值
3.常见简单的二元线性规划实际问题
一是在人力、物力、资金等资源一定的条件下,如何使用它们完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.
解线性规划问题的一般步骤:
审题、设元——列出约束条件
(通常为不等式组)——建立目标函数作出可行域求最优解.
三.解题方法总结
1.二元一次不等式(组)表示的平面区域确定的方法
第一种:若用y=kx+b表示的直线将平面分成上下两部分
不等式
区 域
y>kx+b
表示直线上方的半平面区域
y<kx+b
表示直线下方的半平面区域
第二种:用Ax+By+C=0(B≠0)表示的直线将平面分成上下两部分(B=0读者完成)
不等式
B>0
B<0
Ax+By+C>0
表示直线上方的半平面区域
表示直线下方的半平面区域
Ax+By+C<0
表示直线下方的半平面区域
表示直线上方的半平面区域
联系:将Ax+By+C=0表示的直线转化成y=kx+b的形式即是第一种.
第三种:选特殊点判定(如原点),取一点坐标代入二元一次不等式(组),若成立,则平面区域包括该点,反之,则不包括.
2.线性规划问题求解策略
(1)解决线性规划问题时,找出约束条件和目标函数是关键,一般步骤如下:
①作:确定约束条件,并在坐标系中作出可行域;
②移:由z=ax+by变形为y=-x+,所求z的最值可以看成是求直线y=-x+在y轴上的截距的最值(其中a,b是常数,z随x,y的变化而变化),将直线ax+by=0平移,在可行域中观察使最大(或最小)时所经过的点;
③求:求出取得最大值或最小值的点的坐标,并将其代入目标函数求得最大值和最小值;
④答:写出最后结论.
(2)可行域可以是一个一侧开放的平面区域,也可以是一个封闭的多边形,若是一个多边形,目标函数的最优解一般在多边形的某个顶点处取得.
(3)若要求的最优解是整数解,而通过图象求得的是非整数解,这时应以与线性目标函数的距离为依据,在直线的附近寻求与此直线最近的整点,或者用 “调整优值法”去寻求最优解.
四.典例分析
例1.设满足约束条件,则的最大值是
A.0 B.4 C.5 D.6
【答案】D
由,解得,
即,此时,故选D.
【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.学-科网-
练习1.已知实数x,y满足,若不等式ax-y>0恒成立,则实数a的取值范围为( )
A.(-∞,) B.(4,+∞) C.(,4) D.(,4)
【答案】B
【解析】作出不等式组对应的平面区域如图阴影所示:
若ax﹣y>0恒成立即y<ax恒成立,即平面区域在直线y=ax的下方即可.
即A(1,4)在y=ax的下方或在直线上即可,即a>4,
故选:B.
练习2.若满足 则的最小值等于
A. B. C. D.
【答案】B
【解析】由,满足作出可行域如图,即为线段AB,
联立,解得,化目标函数为,
由图可知,当直线过A时,直线在轴上的截距最小,
有最小值为,故选:B.
(二)含绝对值的不等式
例2. 设满足约束条件,则的最大值是__________.
【答案】2
【解析】画出不等式组表示的平面区域如图中的阴影部分所示.
由图形得,当时,,且当直线经过点时有最大值2,故可得的最大值为2.
答案:2
练习1.已知实数, 满足条件,则的最小值为( )
A. B. C. D.
【答案】C
【解析】由约束条件画出可行域如下图,目标函数可变形为z=2x+y,即,求截距的最小值,过点C(2,1)时, ,选C.
【点睛】线性规划中常见目标函数的转化公式:
(1)截距型: ,与直线的截距相关联,若,当的最值情况和z的一致;若,当的最值情况和的相反;
(2)斜率型:与的斜率,常见的变形:,
,.
(3)点点距离型:表示到两点距离的平方;
(4)点线距离型:表示到直线的距离的倍.
练习2.若实数满足,则的取值范围是( )
A. B. C. D.
【答案】A
【解析】作出不等式组表示的可行域如图.
令 ,则,则
表示直线在轴上的截距,截距越大, 越大
由题意可得 ,此时 )
又可行域过点时, 最大,
过点时最小, ,
,则
故选A
3.若实数满足不等式组,则的最大值是( )
A.15 B.14 C.11 D.10
【答案】B
【解析】由题可知,作出目标函数的可行域,如图所示,由知,当目标函数经过点取得最大值,即,故选B.
(三)与圆有关的线性规划
例3.设满足约束条件,则的最小值为__________.
【答案】
【解析】画出可行域如下图所示,由图可知,当直线平移到和圆弧相切时,取得最小值,此时直线方程为,由点到直线的距离公式得,(取负值),即的最小值为.
【点睛】本小题主要考查线性规划的知识,考查线性型目标函数的最值的求法,属于基础题.题目所给的约束条件中,表示的是圆心为,半径为的圆的圆上和圆内的点构成的区域.对于目标函数,由于,当直线截距最大时,取得最小值,这个在解题过程中要特别注意.
练习1.若点满足,点在圆上,则的最大值为
A. B. C. D.
【答案】A
【解析】根据所给不等式组,画出可行域如下图所示
因为在圆上,所以即求可行域内到点距离加半径即可
由图可知,可行域内点(1,1)到点(-2,3)的距离最大,
所以,所以PQ最大值为5+1=6
所以选A
练习2.设不等式组表示的平面区域为D,若圆C:不经过区域D上的点,则r的取值范围为
A. B. C. D.
【答案】A
【解析】
作出不等式组表示的平面区域,
得到如图的及其内部,其中,,
圆:表示以为圆心,半径为的圆,
由图可得,当半径满足或时,圆不经过区域上的点,
,
当或时,圆不经过区域上的点,
故选
练习3.若,则函数的最小值等于______.
【答案】
故答案为:
(四)目标函数为平方和
例4.已知满足约束条件则目标函数的最小值为( )
A. B. C.1 D.
【答案】B
【解析】由已知得到可行域如图:
目标函数的几何意义是区域内的点到原点距离,所以原点到图中OP的距离即为所求,d
,
所以目标函数的最小值为:;
故选:B.
练习1.若实数,满足,则的最小值为( )
A. B. C. D.
【答案】D
【解析】,而表示正方形及其外部(如图),所以的最小值为点(1,0)到AB:y=-x+2的距离平方减去1,即,选D.
【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.
(五)分式型目标函数
例5.已知实数x,y满足,则的取值范围是__________.
【答案】
【解析】∵实数x,y满足x2﹣4x+3+y2=0,即(x﹣2)2+y2=1,表示以C(2,0)为圆心,半径等于1的圆.
则1,表示圆上的点M(x,y)与定点A(1,﹣3)连线的斜率k加上1,如图.
当切线位于AB这个位置时,k最小,k+1最小.
当切线位于AE这个位置时,k不存在,k+1不存在.
设AB的方程为y+3=k(x﹣1),即 kx﹣y﹣k﹣3=0,由CB=1,可得1,求得k.
而AE的方程为x=1,
故k+1的范围为[,+∞),
故答案为:[,+∞).
练习1.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A. B. C. D.
【答案】D
【解析】画出曲线与围成的封闭区域,如图阴影部分所示.
表示封闭区域内的点和定点连线的斜率,
设,结合图形可得或,
由题意得点A,B的坐标分别为,∴,
∴或,∴的取值范围为.故选D.
练习2.若变量满足约束条件则的最大值是( )
A. B.0 C.1 D.2
【答案】C
【解析】由约束条件作出可行域如图:
表示可行域内的点与定点连线的斜率,由图像易知,点与定点连线的斜率最大,由得,所以的最大值是.
故答案为1
练习3.若实数x,y满足不等式组,则目标函数的最大值是
A.1 B. C. D.
【答案】B
【解析】实数x,y满足不等式组的可行域如图:
目标函数;的几何意义是可行域内的点与连线的斜率,
目标函数的最大值转化为的最小值,由图形可知最优解为,
所以目标函数的最大值是:.
故选:B.
练习4.已知满足不等式组,若,则的取值范围为___.
【答案】
【解析】作出不等式组表示的平面区域,如下图:
由得:,
所以表示点到点距离的平方。
由图可知,
,
的取值范围为
练习5.已知实数满足,则的最小值为________。
【答案】
【解析】由题意作出实数x,y满足平面区域,z=(x﹣1)2+(y﹣5)2可看成阴影内的点P到点D(1,5)的距离的平方,阴影内的点P到点D(1,5)的距离的平方最小值转化为:D到x﹣y+1=0的距离的平方,解得.
故答案为: .
(六)其它形式的目标函数
例6. .已知点满足,的取值范围是__________.
【答案】.
【解析】画出不等式组表示的可行域如图阴影部分所示.
∵,
∴表示可行域内的点到直线和的距离之和的倍,结合图形可得无最大值.
由解得,所以点A的坐标为.
此时.
由解得,所以点A的坐标为.
此时.
∴的最小值为2,
故得的取值范围为.
练习1.已知,满足,的最小值、最大值分别为,,且对上恒成立,则的取值范围为( )
A. B. C. D.
【答案】B
【解析】作出表示的平面区域(如图所示),
显然的最小值为0,
当点在线段上时,
;
当点在线段上时,
;
即;当时,不等式恒成立,
若对上恒成立,则在上恒成立,
又在单调递减,在上单调递增,即,即.
练习2.设不等式组表示的平面区域为,则( )
A.的面积是 B.内的点到轴的距离有最大值
C.点在内时, D.若点,则
【答案】C
【解析】画出可行域如下图所示:有图可知,可行域面积是无限大的,可行域内的点到轴的距离也是没有最大值的,故两个选项错误.注意到在可行域内,而,故D选项错误.有图可知,可行域内的点和连线的斜率比的斜率要小,故C选项正确.所以选C.
练习3.已知变量,满足条件则目标函数的最大值为( )
A. B. C. D.
【答案】C
【解析】
点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二找、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.
练习4.已知实数, 满足不等式组,若直线把不等式组表示的平面区域分成面积相等的两部分,则( )
A. B. C. D.
【答案】B
【解析】不等式组对应平面区域是以A(-1,0),B(1,-1),C(0,2)为顶点的三角形(如图),因为过定点A(-1,0),由题意直线过BC的中点E,所以斜率,选B.
(七)线性规划的实际应用
例7. “五一”期间,为了满足广大人民的消费需求,某共享单车公司欲投放一批共享单车,单车总数不超过100
辆,现有A,B两种型号的单车:其中A型车为运动型,成本为400元辆,骑行半小时需花费元;B型车为轻便型,成本为2400元辆,骑行半小时需花费1元若公司投入成本资金不能超过8万元,且投入的车辆平均每车每天会被骑行2次,每次不超过半小时不足半小时按半小时计算,问公司如何投放两种型号的单车才能使每天获得的总收入最多,最多为多少元?
【答案】公司投放两种型号的单车分别为80辆20辆才能使每天获得的总收入最多,最多为120元.
【解析】根据题意,设投放A型号单车x辆,B型号单车y辆,单车公司每天可获得的总收入为Z,
则有,
即,
且,
画出不等式组表示的平面区域,由,解得.
当目标函数,经过点时,取得最大值为:.
答:公司投放两种型号的单车分别为80辆20辆才能使每天获得的总收入最多,最多为120元。
【点睛】用线性规划的方法来解决实际问题:先根据问题的需要选取起关键作用的关联较多的量用字母表示,进而把问题中所有的量都用这两个字母表示出来,建立数学模型,再画出表示的区域。
练习1.电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间80分钟,其中广告时间1分钟,收视观众60万;连续剧乙每次播放时间40分钟,其中广告时间1分钟,收视观众20万.现在企业要求每周至少播放广告6分钟,而电视台每周至多提供320分钟节目时间.
(1)设每周安排连续剧甲次,连续剧乙次,列出, 所应该满足的条件;
(2)应该每周安排两套电视剧各多少次,收视观众最多?
【答案】(1)(2)每周应安排甲、乙连续剧2套、4套
【解析】(1)由题意可得:;
(2)收视观众数为万,则,所以,因此直线在y轴截距最大时,取最大值;
画出可行域
易知当,时,有最大值,最大值是200,收视观众200万.
每周应安排甲、乙连续剧2套、4套
练习2.两类药片有效成分如下表所示,若要求至少提供12mg阿司匹林,70mg小苏打,28mg可待因,问两类药片最小总数是多少?怎样搭配价格最低?
成分
种类
阿司匹林
小苏打
可待因
每片价格(元)
A(mg/片)
2
5
1
0.1
B(mg/片)
1
7
6
0.2
【答案】当A类药品3片、B类药品8片时,药品价格最低.
【解析】设两种药品分别为片和片,
则有,两类药片的总数为,两类药片的价格和为。
如图所示,作直线,
将直线向右上方平移至位置时,直线经过可行域上一点,且与原点最近.
解方程组,得交点坐标为.
由于不是整点,因此不是的最优解,
结合图形可知,经过可行域内整点且与原点距离最近的直线是,
经过的整点是,因此的最小值为.药片最小总数为片.
同理可得,当时,取最小值,
因此当类药品片、类药品片时,药品价格最低。
练习3.《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则___,___.
【答案】10 900
【解析】由题意可得,解得.
故答案为10 900