- 178.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
必修二 1.2.3 空间几何体的直观图
一、选择题
1、一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( )
A.+ B.1+
C.1+ D.2+
2、如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的( )
3、下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是( )
4、如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是( )
A.8 cm B.6 cm
C.2(1+) cm D.2(1+) cm
5、具有如图所示直观图的平面图形ABCD是( )
A.等腰梯形 B.直角梯形
C.任意四边形 D.平行四边形
6、下列结论:
①角的水平放置的直观图一定是角;
②相等的角在直观图中仍然相等;
③相等的线段在直观图中仍然相等;
④两条平行线段在直观图中对应的两条线段仍然平行.
其中正确的有( )
A.①② B.①④
C.③④ D.①③④
二、填空题
7、如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为____.
8、水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.
9、利用斜二测画法得到:
①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;
④菱形的直观图是菱形.
以上结论中,正确的是______________.(填序号)
三、解答题
10、在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.
11、已知正三角形ABC的边长为a,求△ABC的直观图△A′B′C′的面积.
12、如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD=3 cm,试画出它的直观图.
13、如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.
以下是答案
一、选择题
1、D [如图1所示,等腰梯形A′B′C′D′为水平放置的原平面图形的直观图,作D′E′∥A′B′交B′C′于E′,由斜二测直观图画法规则,直观图是等腰梯形A′B′C′D′的原平面图形为如图2所示的直角梯形ABCD,且AB=2,BC=1+,AD=1,所以SABCD=2+.
图1 图2]
2、C
3、C [可分别画出各组图形的直观图,观察可得结论.]
4、A [
根据直观图的画法,原几何图形如图所示,四边形OABC为平行四边形,OB=2,OA=1,AB=3,从而原图周长为8 cm.]
5、B
6、B [由斜二测画法的规则判断.]
二、填空题
7、
解析
画出直观图,则B′到x′轴的距离为·OA=OA=.
8、2.5
解析 由直观图知,原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.
9、①②
解析 斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.
三、解答题
10、
解 四边形ABCD的真实图形如图所示,
∵A′C′在水平位置,A′B′C′D′为正方形,
∴∠D′A′C′=∠A′C′B′=45°,
∴在原四边形ABCD中,
DA⊥AC,AC⊥BC,∵DA=2D′A′=2,
AC=A′C′=,∴S四边形ABCD=AC·AD=2.
11、解 先画出正三角形ABC,
然后再画出它的水平放置的直观图,
如图所示.由斜二测画法规则知
B′C′=a,O′A′=a.
过A′引A′M⊥x′轴,
垂足为M,
则A′M=O′A′·sin 45°=a×=a.
∴S△A′B′C′=B′C′·A′M=a×a
=a2.
12、解 (1)如图a所示,在梯形ABCD中,以边AB所在的直线为x轴,点A为原点,建立平面直角坐标系xOy.如图b所示,画出对应的x′轴,y′轴,使∠x′O′y′=45°.
(2)在图a中,过D点作DE⊥x轴,垂足为E.在x′轴上取A′B′=AB=4 cm,A′E′=AE=≈2.598 cm;过点E′作E′D′∥y′轴,使E′D′=ED,再过点D′作D′C′∥x′轴,且使D′C′=DC=2 cm.
(3)连接A′D′、B′C′,并擦去x′轴与y′轴及其他一些辅助线,如图c所示,则四边形A′B′C′D′就是所求作的直观图.
13、解 (1)作出长方体的直观图ABCD-A1B1C1D1,如图a所示;
(2)再以上底面A1B1C1D1的对角线交点为原点建立x′,y′,z′轴,如图b所示,在z′上取点V′,使得V′O′的长度为棱锥的高,连接V′A1,V′B1,V′C1,V′D1,得到四棱锥的直观图,如图b;
(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.