• 933.00 KB
  • 2021-07-01 发布

数学文卷·2019届四川省广安市高二上学期期末考试(2018-01)

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
广安市2017年秋高二期末试题 数学(文史类)‎ 第Ⅰ卷(共60分)‎ 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.直线的倾斜角是( )‎ A. B. C. D.‎ ‎2.某市2017年各月的平均气温(单位:)数据的茎叶图如图,则这组数据的中位数是( )‎ A.19 B.20 C. D.‎ ‎3.圆的圆心到直线的距离为( )‎ A.1 B.2 C. D.‎ ‎4.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取70人,则为( )‎ A.100 B.150 C.200 D.250‎ ‎5.正方体中,异面直线与所成角的大小为( )‎ A. B. C. D.‎ ‎6.原命题:“设,若,则”,以及它的逆命题,否命题,逆否命题中,真命题共有( )‎ A.0个 B.1个 C.2个 D.4个 ‎7.四进制数化为十进制数为( )‎ A.30 B.27 C.23 D.18‎ ‎8.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,则恰有一件次品的概率为( )‎ A. B. C. D.‎ ‎9.执行如图的程序,如果输出的结果是4,则输入的只可能是( )‎ A.2 B. C.2或 D.或 ‎10.设点,,若直线与线段没有交点,则的取值范围是( )‎ A. B.‎ C. D.‎ ‎11.若是两条不同的直线,垂直于平面,则“”是“”的( )‎ A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 ‎12.已知为双曲线的左、右顶点,点在上,为等腰三角形,顶角为,则的离心率为( )‎ A. B.2 C. D.‎ 第Ⅱ卷(共90分)‎ 二、填空题(每题5分,满分20分,将答案填在答题纸上)‎ ‎13.抛物线的焦点坐标为 .‎ ‎14.过点且与直线平行的直线方程为 .‎ ‎15.在长方体中,,,,三棱椎的体积为 .‎ ‎16.在区间上随机地选择一个数,则方程有两个负实根的概率为 .‎ 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎17.设:实数满足;:实数满足.‎ ‎(1)若为假,求实数的取值范围;‎ ‎(2)若且是的充分不必要条件,求实数的取值范围.‎ ‎18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图),其中样本数据分组区间为,,…,,.‎ ‎(1)求频率分布图中的值;‎ ‎(2)估计该企业的职工对该部门评分不低于80的概率;‎ ‎(3)从评分在的受访职工中, 随机抽取2人,求此2人评分都在的概率.‎ ‎19.已知,圆,直线.‎ ‎(1)当为何值时,直线与圆相切;‎ ‎(2)当直线与圆相交于两点,且时,求直线的方程.‎ ‎20.下表是高二某位文科生连续5次月考的历史、政治的成绩:‎ 月份 ‎9‎ ‎10‎ ‎11‎ ‎12‎ ‎1‎ 历史(分)‎ ‎79‎ ‎81‎ ‎83‎ ‎85‎ ‎87‎ 政治(分)‎ ‎77‎ ‎79‎ ‎79‎ ‎82‎ ‎83‎ (1) 求该生5次月考历史成绩的平均分和政治成绩的方差;‎ (2) 一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量的线性回归方程.‎ ‎(附:,,,)‎ ‎21.如图,在三棱椎中, 分别为棱的中点,已知,,,,求证:‎ ‎(1)直线平面;‎ ‎(2)平面平面.‎ ‎22.已知椭圆的离心率为,短轴长为.‎ ‎(1)求椭圆的方程;‎ ‎(2)设,是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线与轴相交于定点;‎ ‎(3)在(2)的条件下,过点的直线与椭圆交于,两点,求的取值范围.‎ 广安市2017年秋高二期末试题参考答案及评分标准 数学(文史类)‎ 一、选择题 ‎1-5:BBCAC 6-10:CBBAC 11、12:BD 二、填空题 ‎13. 14. 15.1 16. ‎ 三、解答题 ‎17.解:(1)∵为假,∴为真,‎ ‎∴为所求的取值范围.‎ ‎(2)由得,‎ ‎∵是的充分不必要条件,∴且,‎ 则,‎ ‎∴实数的取值范围是.‎ ‎18.解:(1)因为,解得.‎ ‎(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为;‎ ‎(3)受访职工中评分在的有:(人),记为;‎ 受访职工评分在的有:(人),记为,‎ 从这5名受访职工中随机抽取2人,所有可能的结果共有10种,分别是:‎ ‎,,,,,,,,,,‎ 又因为所抽取2人的评分都在的结果只有1种,即,‎ 故所求的概率为.‎ ‎19.解:将圆的方程配方得标准方程为,‎ ‎∴此圆的圆心为,半径为2.‎ (1) 若直线与圆相切,则有,解得.‎ (2) 当直线与圆相交,圆心到直线的距离为,‎ ‎,可得,‎ 解得,或,‎ ‎∴直线的方程是和.‎ ‎20.解:(1),‎ ‎,‎ ‎∴政治成绩的方差 ‎.‎ ‎(2)∵,,,,,‎ ‎∴,‎ ‎∴,‎ ‎∴变量的线性回归方程为.‎ ‎21.证明:(1)∵为中点,‎ ‎∴,‎ 又∵平面,平面,‎ ‎∴平面.‎ ‎(2)∵为中点,∴,‎ 又∵为中点,∴,‎ ‎∴,∴,‎ ‎∴;‎ ‎∵,,∴;‎ ‎∵,∴平面;‎ ‎∵平面,∴平面平面.‎ ‎22.解:(1)由题意知,‎ 又∵,∴,∴,‎ 解,得,故椭圆的方程为.‎ ‎(2)由题意知直线的斜率存在,设直线的方程为,‎ 由得.①‎ 设点,,则,‎ 直线的方程为,‎ 令,得,将,代入,‎ 整理,得.②‎ 由①得,代入②整理,得.‎ ‎∴直线与轴相交于定点.‎ (1) 当过点直线的斜率存在时,设直线的方程为,‎ 且,在椭圆上,‎ 由得,易知,‎ ‎∴,,,‎ 则,‎ ‎∵,∴,‎ ‎∴,‎ 当过点直线的斜率不存在时,其方程为,‎ 解得,或,.‎ 此时,∴的取值范围是.‎