- 115.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二章 推理与证明(B)
一、选择题
1、下列有关三段论推理“自然数都是整数,4是自然数,所以4是整数”的说法正确的是( )
A.推理正确 B.推理形式不正确
C.大前提错误 D.小前提错误
2、下列推理过程是类比推理的是( )
A.人们通过大量试验得出掷硬币出现正面的概率为
B.科学家通过研究老鹰的眼睛发明了电子鹰眼
C.通过检测溶液的pH值得出溶液的酸碱性
D.由周期函数的定义判断某函数是否为周期函数
3、已知f(x)=x3+x,a,b,c∈R,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值( )
A.一定大于零 B.一定等于零
C.一定小于零 D.正负都有可能
4、勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d的长方体中,有( )
A.p+q+r=d
B.p2+q2+r2=d2
C.p3+q3+r3=d3
D.p2+q2+r2+pq+pr+qr=d2
5、观察式子:1+<,1++<,1+++<,…,则可归纳出一般式子为( )
A.1+++…+< (n≥2)
B.1+++…+< (n≥2)
C.1+++…+< (n≥2)
D.1+++…+< (n≥2)
6、若a,b,c均为实数,则下面四个结论均是正确的:
①ab=ba;②(ab)c=a(bc);③若ab=bc,b≠0,则a-c=0;④若ab=0,则a=0或b=0.
对向量a,b,c,用类比的思想可得到以下四个结论:
①a·b=b·a;
②(a·b)c=a(b·c);
③若a·b=b·c,b≠0,则a=c;
④若a·b=0,则a=0或b=0.
其中结论正确的有( )
A.0个 B.1个
C.2个 D.3个
7、已知数列{an}满足a1=0,an+1= (n∈N*),则a2 010等于( )
A.0 B.- C. D.
8、由“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四个侧面( )
A.各正三角形内任一点
B.各正三角形的某高线上的点
C.各正三角形的中心
D.各正三角形外的某点
9、已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,那么( )
A.a=,b=c= B.a=b=c=
C.a=0,b=c= D.不存在这样的a,b,c
10、下列三句话按三段论的模式排列顺序正确的是( )
①2 006能被2整除;
②一切偶数都能被2整除;
③2 006是偶数.
A.①②③ B.②①③
C.②③① D.③②①
11、有以下结论:
①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.
下列说法中正确的是( )
A.①与②的假设都错误
B.①与②的假设都正确
C.①的假设正确;②的假设错误
D.①的假设错误;②的假设正确
二、填空题
12、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,55,…这些数叫做三角形数,这是因为这些数目的点可以排成正三角形(如图所示),则三角形数的一般表达式f(n)=__________.
13、对于“求证函数f(x)=-x3在R上是减函数”,用“三段论”可表示为:大前提是“对于定义域为D的函数f(x),若对任意x1,x2∈D且x2-x1>0,有f(x2)-f(x1)<0,则函数f(x)在D上是减函数”,小前提是“__________________________”,结论是“f(x)=-x3在R上是减函数”.
14、在△ABC中,D为边BC的中点,则=(+).将上述命题类比到四面体中去,得到一个类比命题:________________________________.
15、下面的四个不等式:
①a2+b2+c2≥ab+bc+ca;
②a(1-a)≤;③+≥2;
④(a2+b2)·(c2+d2)≥(ac+bd)2.
其中不成立的有________个.
三、解答题
16、设f(x)=x2+ax+b,
求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.
17、 观察下表:
1,
2,3
4,5,6,7
8,9,10,11,12,13,14,15,
…
问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2 008是第几行的第几个数?
18、设二次函数f(x)=ax2+bx+c (a≠0)中的a,b,c均为整数,且f(0),f(1)均为奇数,求证:方程f(x)=0无整数根.
19、如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2a,CD=a,F是BE的中点.
(1)求证:DF∥平面ABC;
(2)求证:AF⊥BD.
20、 已知a>0,b>0,a+b=1,
求证:+≤2.
21、已知函数f(x)=lg,x∈.若x1,x2∈且x1≠x2,求证:[f(x1)+f(x2)]>f.
以下是答案
一、选择题
1、A [三段论中的大前提,小前提以及推理形式都是正确的,所以结论正确.]
2、B
3、A [f(x)=x3+x是奇函数,且在R上是增函数,由a+b>0得a>-b,
所以f(a)>f(-b),即f(a)+f(b)>0,
同理f(a)+f(c)>0,f(b)+f(c)>0,
所以f(a)+f(b)+f(c)>0.]
4、B
5、C [由合情推理可归纳出1+++…+< (n≥2).]
6、B [利用类比思想结合向量的定义及性质,特别是向量的数量积的定义可知①正确,②③④不正确.]
7、C [a2==-,a3==,a4=0,所以此数列具有周期性,0,-,依次重复出现.因为2 010=3×670,所以a2 010=.]
8、C [正三角形的边对应正四面体的面,即正三角形所在的正四面体的侧面,所以边的中点对应的就是正四面体各正三角形的中心.故选C.]
9、A [分别令n=1,2,3,
得
所以a=,b=c=.]
10、C
11、D [用反证法证题时一定要将对立面找全.在(1)中应假设p+q>2.故(1)的假设是错误的,而(2)的假设是正确的,故选D.]
二、填空题
12、
解析 当n=1时,1=;当n=2时,3=;当n=3时,6=;当n=4时,10=;…,猜想:f(n)=.
13、对于任意x1,x2∈R且x2-x1>0,有f(x2)-f(x1)=-x+x=-(x2-x1)(x+x1x2+x)=-(x2-x1)·<0
14、在四面体A—BCD中,G为△BCD的重心,
则=(++)
15、1
解析 由a2+b2+c2-(ab+bc+ca)
=[2a2+2b2+2c2-2ab-2bc-2ca]
=[(a-b)2+(b-c)2+(c-a)2]≥0,
故①正确.
由-a(1-a)=-a+a2=2≥0,
故②正确.
(a2+b2)·(c2+d2)-(ac+bd)2
=a2c2+a2d2+b2c2+b2d2-a2c2-2acbd-b2d2
=a2d2+b2c2-2abcd=(ad-bc)2≥0,故④正确.
∵+≥2或+≤-2,∴③不正确.
三、解答题
16、证明 假设|f(1)|<,|f(2)|<,|f(3)|<,
于是有-<1+a+b< ①
-<4+2a+b< ②
-<9+3a+b< ③
①+③,得-1<10+4a+2b<1,
所以-3<8+4a+2b<-1,
所以-<4+2a+b<-.
由②知-<4+2a+b<,矛盾,
所以假设不成立,即|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.
17、解 (1)由表知,第二行起,每行的第一个数为偶数,所以第n+1行的第一个数为2n,所以第n行的最后一个数为2n-1.
(2)由(1)知第n-1行的最后一个数为2n-1-1,第n行的第一个数为2n-1,第n行的最后一个数为2n-1.又由观察知,每行数字的个数与这一行的第一个数相同,所以由等差数列求和公式得,
Sn==22n-3+22n-2-2n-2.
(3)因为210=1 024,211=2 048,又第11行最后一个数为211-1=2 047,所以2 008是在第11行中,由等差数列的通项公式得,2 008=1 024+(n-1)·1,所以n=985,所以2 008是第11行的第985个数.
18、证明 假设方程f(x)=0有一个整数根k,
则ak2+bk+c=0.①
因为f(0)=c,f(1)=a+b+c均为奇数,
所以a+b必为偶数,
当k为偶数时,令k=2n (n∈Z),
则ak2+bk+c=4n2a+2nb+c=2n(2na+b)+c必为奇数,与①式矛盾;
当k为奇数时,令k=2n+1 (n∈Z),
则ak2+bk+c=(2n+1)(2na+a+b)+c为一奇数与一偶数乘积加上一个奇数,必为奇数,也与①式矛盾,故假设不成立.
综上可知方程f(x)=0无整数根.
19、证明 (1)取AB的中点G,连接FG,CG,
可得FG∥AE,FG=AE,
又CD⊥平面ABC,AE⊥平面ABC,
∴CD∥AE,CD=AE,
∴FG∥CD,FG=CD.
又∵FG⊥平面ABC,
∴四边形CDFG是矩形,
DF∥CG,CG⊂平面ABC,
DF⊄平面ABC,
∴DF∥平面ABC.
(2)Rt△ABE中,AE=2a,AB=2a,F为BE的中点,
∴AF⊥BE,∵△ABC是正三角形,
∴CG⊥AB,∴DF⊥AB,
又DF⊥FG,FG∩AB=G,
∴DF⊥平面ABE,DF⊥AF,
又∵DF∩BE=F,∴AF⊥平面BDF,
又BD⊂平面BDF,∴AF⊥BD.
20、证明 ∵1=a+b≥2,∴ab≤.
∴(a+b)+ab+≤1.
∴≤1.
从而有2+2≤4.
即++2≤4.
∴2≤4.
∴+≤2.
21、证明 要证原不等式成立,只需证明
>2,
事实上,∵00.
∴>2,
即有lg>lg2,
故[f(x1)+f(x2)]>f.