- 83.57 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时分层训练(三十七) 归纳与类比
(对应学生用书第269页)
A组 基础达标
一、选择题
1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理( )
A.结论正确 B.大前提不正确
C.小前提不正确 D.全不正确
C [因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.]
2.如图643,根据图中的数构成的规律,得a表示的数是( )
图643
A.12
B.48
C.60
D.144
D [由题图中的数可知,每行除首末两数外,其他数都等于它肩上两数的乘积,所以a=12×12=144.]
3.(2017·陕西渭南一模)
古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如(如图644):
图644
他们研究过图中的3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{an},那么a9的值为( )
【导学号:79140206】
A.45 B.55
C.65 D.66
B [第1个图中,小石子有3=1+2个,
第2个图中,小石子有6=1+2+3个,
第3个图中,小石子有10=1+2+3+4个,
…
故第9个图中,小石子有1+2+3+…+10==55个,即a9=55,故选B.]
4.如图645所示,椭圆中心在坐标原点,F为左焦点,当⊥时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于( )
图645
A. B.
C.-1 D.+1
A [设“黄金双曲线”方程为-=1,
则B(0,b),F(-c,0),A(a,0).
在“黄金双曲线”中,
因为⊥,所以·=0.
又=(c,b),=(-a,b).
所以b2=ac.而b2=c2-a2,所以c2-a2=ac.
在等号两边同除以a2,得e=.]
5.(2018·南昌一模)我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有90钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有( )
A.28钱 B.32钱
C.56钱 D.70钱
B [设甲、乙、丙手上各有钱x,y,z,则由题意可得三式相加得x+y+z=108,则y+=70,解得y=32,故选B.]
二、填空题
6.若P0(x0,y0)在椭圆+=1(a>b>0)外,过P0作椭圆的两条切线的切点为P1,P2,则切点弦P1P2所在的直线方程是+=1,那么对于双曲线则有如下命题:若P(x0,y0)在双曲线-=1(a>0,b>0)外,过P0作双曲线的两条切线,切点为P1,P2,则切点弦P1P2所在直线的方程是________.
-=1 [类比椭圆的切点弦方程可得双曲线-=1的切点弦方程为-=1.]
7.观察下列等式:
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
…
照此规律,第n个等式为________.
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 [由前4个等式可知,第n个等式的左边第一个数为n,且连续2n-1个整数相加,右边为(2n-1)2,故第n个等式为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.]
8.(2018·重庆调研(二))甲、乙、丙三人各从图书馆借来一本书,他们约定读完后互相交换.三人都读完了这三本书之后,甲说:“我最后读的书与丙读的第二本书相同.”乙说:“我读的第二本书与甲读的第一本书相同.”根据以上说法,推断乙读的最后一本书是________读的第一本书.
【导学号:79140207】
丙 [因为共有三本书,而乙读的第一本书与第二本书已经明确,只有丙读的第一本书乙还没有读,所以乙读的最后一本书是丙读的第一本书.]
三、解答题
9.设f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.
[解] f(0)+f(1)=+
=+=+=,
同理可得:f(-1)+f(2)=,
f(-2)+f(3)=,并注意到在这三个特殊式子中,自变量之和均等于1.
归纳猜想得:当x1+x2=1时,
均有f(x1)+f(x2)=.
10.已知O是△ABC内任意一点,连接AO,BO,CO并延长,分别交对边于A′,B′,C′,则++=1,这是一道平面几何题,其证明常采用“面积法”:
++=++==1.
请运用类比思想,对于空间中的四面体ABCD,存在什么类似的结论,并用“体积法”证明.
[解] 在四面体ABCD中,任取一点O,连接AO,DO,BO,CO并延长,分别交四个面于E,F,G,H点.
则+++=1.
证明:在四面体OBCD与ABCD中,
===.
同理有=;=;=.
所以+++
=
==1.
B组 能力提升
11.给出以下数对序列:
(1,1);
(1,2)(2,1);
(1,3)(2,2)(3,1);
(1,4)(2,3)(3,2)(4,1);
…
记第i行的第j个数对为aij,如a43=(3,2),则anm=( )
A.(m,n-m+1) B.(m-1,n-m)
C.(m-1,n-m+1) D.(m,n-m)
A [由前4行的特点,归纳可得:若anm=(a,b),则a=m,b=n-m+1,所以anm=(m,n-m+1).]
12.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
1和3 [法一:由题意得丙的卡片上的数字不是2和3.
若丙的卡片上的数字是1和2,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和3,满足题意;
若丙的卡片上的数字是1和3,则由乙的说法知乙的卡片上的数字是2和3,则甲的卡片上的数字是1和2,不满足甲的说法.
故甲的卡片上的数字是1和3.
法二:因为甲与乙的卡片上相同的数字不是2,所以丙的卡片上必有数字2.又丙的卡片上的数字之和不是5,所以丙的卡片上的数字是1和2.因为乙与丙的卡片上相同的数字不是1,所以乙的卡片上的数字是2和3,所以甲的卡片上的数字是1和3.]
13.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos 48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
【导学号:79140208】
[解] (1)选择②式,计算如下:
sin215°+cos215°-sin 15°cos 15°=1-sin 30°
=1-=.
(2)法一:三角恒等式为
sin2α+cos2(30°-α)-sin αcos(30°-α)=.
证明如下:
sin2α+cos2(30°-α)-sin αcos(30°-α)
=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)
=sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α
=sin2α+cos2α=.
法二:三角恒等式为
sin2 α+cos2(30°-α)-sin αcos(30°-α)=.
证明如下:
sin2α+cos2(30°-α)-sin αcos(30°-α)
=+-sin α(cos 30° cos α+sin 30°sin α)
=-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α
=-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α)
=1-cos 2α-+cos 2α=.