• 715.50 KB
  • 2021-07-01 发布

福建省泉州第十六中学2020届高三上学期期中考试数学(文)试题

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
泉州第十六中学2019年秋季期中考试卷 高三数学(文科) ‎ 考试时间:120分钟 满分:150分 2019.11.7‎ 第Ⅰ卷(选择题 共60分)‎ 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.已知集合,则集合的子集个数为( )‎ A.1 B.‎2 C.3 D.4‎ ‎2.已知,,则下列命题中正确的是( )‎ A. B. C. D.‎ ‎3.若点在角的终边上,则( )‎ A. B. C. D.‎ ‎4.向量, ,若,则( )‎ A. B. C. D. ‎ ‎5. 已知直线,平面,则是的 ( )‎ A.充分但不必要条件 B.必要但不充分条件 C. 充分必要条件 D.既不充分也不必要条件 ‎6.已知,则( )‎ A. B. C. D.‎ ‎7. 函数的零点所在的大致区间为( )‎ A. B. C. D.‎ ‎8.函数的图象大致为( )‎ C.‎ D.‎ B.‎ A.‎ ‎ ‎ ‎9.设a=60.7,b=0.76,c=log0.76,则a,b,c这三个数的大小关系为( )‎ A.c<b<a B.c<a<b C.b<a<c D.a<c<b ‎10.函数与函数的图象交点的个数是( ) ‎ ‎ A.0 B‎.1 C.2 D.3‎ ‎11.如图,在正方形网格纸上,粗实线画出的是某多面体的三视图及其部分尺寸.若该多面体的顶点在同一球面上,则该球的表面积等于( )‎ A. B. C. D.‎ ‎12.已知,若对任意两个不等的正实数,都有恒成立,则实数的取值范围是( )‎ A. B. C. D.‎ 第II卷(非选择题 共90分)‎ 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置)‎ ‎13.设满足约束条件:,则的最小值为 _____________.‎ ‎14.在中,,则 ________ .‎ ‎15.已知,,,则的最小值是 __________ .‎ ‎16.已知各项都不相等的等差数列,满足,且,‎ 则数列项中的最大值为__________________.‎ 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)‎ ‎17. (本小题满分12分)已知集合,.‎ ‎(1)分别求,;‎ ‎(2)已知集合,若,求实数的取值集合. ‎ ‎18.(本小题满分12分)‎ 已知函数. ‎ ‎(1)求的最小值;‎ ‎(2)在中,角,,的对边分别是,,,若,‎ ‎,,求的周长.‎ ‎19.(本小题满分12分)‎ 已知为等比数列的前项和,,且,,成等差数列.‎ ‎(1)求数列的通项公式及;‎ ‎(2)若,,求数列的前项和.‎ ‎20. (本小题满分12分)‎ 直三棱柱ABC-A1B‎1C1中,AB=5,AC=3,BC=4,点D是 线段AB上的动点.‎ ‎(1)当点D是AB的中点时,求证:AC1∥平面B1CD.‎ ‎(2) 线段AB上是否存在点D,使得平面ABB‎1A1⊥平面CDB1?‎ 若存在,试求出AD的长度;若不存在,请说明理由.‎ ‎21.(本小题满分12分) ‎ ‎ 已知函数().‎ ‎(1)求的单调区间和极值; ‎ ‎(2)求在上的最小值.‎ 请考生在(22)、(23)、两题中任选一题作答。如果多做,则按所做的第一题记分.‎ ‎22.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,直线的参数方程为(其中参数,为常数),在以为极点,轴正半轴为极轴的极坐标中,曲线的方程为.‎ ‎(1)求曲线的普通方程;‎ ‎(2)已知直线与曲线相交于,两点,且,求常数的值.‎ ‎ 23.(本小题满分10分)选修4-5:不等式选讲 已知函数.‎ ‎(1)若,求不等式的解集;‎ ‎(2)若方程有三个不同的解,求的取值范围.‎ SK 试 卷 分 析 S型错误(技能型错误)‎ K型错误(知识型错误)‎ 错误类型 涉及题序 失分 错误内容 涉及题序 失分 审题错误 推理错误 计算错误 书写错误 泉州第十六中学2019年秋季期中考试卷 ‎ 高三文科试卷参考答案与评分标准 第Ⅰ卷(选择题 共60分)‎ 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答案 D A A D B C C B A D C D 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置)‎ ‎13.-3 14. 15. 16. 6‎ 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)‎ ‎17.(本小题满分12分)‎ 解: (1) ………………………………………3分 ‎ ……………6分 ‎(2)①当时,,此时; ……………8分 ‎②当时,,则; ……………10分 综合①②,可得的取值范围是 ……………12分 ‎18.(本小题满分12分)‎ 解:(Ⅰ) ‎ ‎ …………………4分 ‎ 当时,取最小值为 …………………6分 ‎(Ⅱ),∴, ,,∴. …………………7分 ‎,∴,‎ 由余弦定理得, …………………9分 ‎∴即, …………………11分 ‎∴,所以的周长为. …………………12分 ‎19.(本小题满分12分)‎ 解:(1)设数列的公比为,‎ 由题意知, ∴. ∴. ‎ ‎ ..........6分 ‎(2)由(1)可得 ..........7分 ‎, ..........9分 ‎∴. ..........12分 ‎20.(本小题满分12分)‎ 解:(1) 如图,连接BC1,交B‎1C于点E,连接DE,则点E是BC1的中点.‎ 又点D是AB的中点,由中位线定理得DE∥AC1,‎ ‎∵DE⊂平面B1CD,AC1⊄平面B1CD,‎ ‎∴AC1∥平面B1CD. …………………5分 ‎(2) 当CD⊥AB时,平面ABB‎1A1⊥平面CDB1. …………7分 证明如下:∵AA1⊥平面ABC,CD⊂ 平面ABC,‎ ‎∴AA1⊥CD.又CD⊥AB,AA1∩AB=A,∴CD⊥平面ABB‎1A1.‎ ‎∵CD⊂平面CDB1,∴平面ABB‎1A1⊥平面CDB1.∵AB=5,AC=3,BC=4,∴AC2+BC2=AB2,‎ 故△ABC是以角C为直角的三角形.又CD⊥AB,∴可求得AD= …………12分 ‎21.(本小题满分12分)‎ 解:(1) ……………1分 由,得;‎ 当时,;当时,;‎ ‎∴的单调递增区间为,单调递减区间为 ……………4分,无极大值. ……………6分 ‎(2)当,即时,在上递增,∴;‎ 当,即时,在上递减,∴;‎ 当,即时,在上递减,在上递增,‎ ‎∴. ..........12分 ‎22.(本小题满分10分)选修4-4:坐标系与参数方程 解:(1),,‎ 所以曲线的普通方程为:. ……………5分 ‎(2)将曲线的方程变形为与直线的参数方程联立得:‎ ‎.‎ 首先,由韦达定理,.‎ 由参数的含义知:,‎ 即,满足,故,综上常数的值为.……………10分 ‎23.(本小题满分10分)‎ 解:(1)时,‎ ‎∴当时,不合题意;‎ 当时,,解得;‎ 当时,符合题意.‎ 综上,的解集为. ……………5分 ‎(2)设,的图象和的图象如图,‎ 易知的图象向下平移1个单位以内(不包括1个单位)与的图象始终有3个 交点,从而.‎ ‎ ……………10分