- 98.49 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 简单的三角恒等变换
题型一 三角函数式的化简
1.化简:= .
答案 2cos α
解析 原式==2cos α.
2.化简:= .
答案 cos 2x
解析 原式=
=
===cos 2x.
3.化简:-2cos(α+β).
解 原式=
=
=
=
==.
思维升华 (1)三角函数式的化简要遵循“三看”原则
一看角,二看名,三看式子结构与特征.
(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.
题型二 三角函数的求值
命题点1 给角求值与给值求值
例1 (1)(2018·阜新质检)[2sin 50°+sin 10°(1+tan 10°)]·= .
答案
解析 原式=·
sin 80°=·
cos 10°=2[sin 50°·cos 10°+sin 10°·cos(60°-10°)]
=2sin(50°+10°)=2×=.
(2)(2018·赤峰模拟)已知cos=,θ∈,则sin= .
答案
解析 由题意可得cos2==,cos=-sin 2θ=-,即sin 2θ=.
因为cos=>0,θ∈,
所以0<θ<,2θ∈,
根据同角三角函数基本关系式,可得cos 2θ=,
由两角差的正弦公式,可得
sin=sin 2θcos -cos 2θsin
=×-×=.
命题点2 给值求角
例2 (1)设α,β为钝角,且sin α=,cos β=-,则α+β的值为( )
A. B.
C. D.或
答案 C
解析 ∵α,β为钝角,sin α=,cos β=-,
∴cos α=-,sin β=,
∴cos(α+β)=cos αcos β-sin αsin β=>0.
又α+β∈(π,2π),∴α+β∈,
∴α+β=.
(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为 .
答案 -
解析 ∵tan α=tan[(α-β)+β]
===>0,
∴0<α<.
又∵tan 2α===>0,
∴0<2α<,
∴tan(2α-β)===1.
∵tan β=-<0,∴<β<π,-π<2α-β<0,
∴2α-β=-.
引申探究
本例(1)中,若α,β为锐角,sin α=,cos β=,则α+β= .
答案
解析 ∵α,β为锐角,∴cos α=,sin β=,
∴cos(α+β)=cos αcos β-sin αsin β
=×-×=.
又0<α+β<π,∴α+β=.
思维升华 (1)给角求值与给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法.
(2)给值求角问题:先求角的某一三角函数值,再求角的范围确定角.
跟踪训练1 (1)已知α∈,且2sin2α-sin α·cos α-3cos2α=0,则= .
答案
解析 ∵α∈,且2sin2α-sin α·cos α-3cos2α=0,
则(2sin α-3cos α)·(sin α+cos α)=0,
又∵α∈,sin α+cos α>0,
∴2sin α=3cos α,又sin2α+cos2α=1,
∴cos α=,sin α=,
∴
===.
(2)已知sin α=,sin(α-β)=-,α,β均为锐角,则β= .
答案
解析 因为α,β均为锐角,所以-<α-β<.
又sin(α-β)=-,所以cos(α-β)=.
又sin α=,所以cos α=,
所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=.
所以β=.
题型三 三角恒等变换的应用
例3 已知函数f(x)=sin2x-cos2x-2sin xcos x(x∈R).
(1)求f的值;
(2)求f(x)的最小正周期及单调递增区间.
解 (1)由sin =,cos =-,得
f=2-2-2××=2.
(2)由cos 2x=cos2x-sin2x与sin 2x=2sin xcos x,
得f(x)=-cos 2x-sin 2x=-2sin.
所以f(x)的最小正周期是π.
由正弦函数的性质,得
+2kπ≤2x+≤+2kπ,k∈Z,
解得+kπ≤x≤+kπ,k∈Z.
所以f(x)的单调递增区间为
(k∈Z).
思维升华 三角恒等变换的应用策略
(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.
(2)把形如y=asin x+bcos x化为y=sin(x+φ),可进一步研究函数的周期性、单调性、最值与对称性.
跟踪训练2 (2018·北京)已知函数f(x)=sin2x+sin xcos x.
(1)求f(x)的最小正周期;
(2)若f(x)在区间上的最大值为,求m的最小值.
解 (1)f(x)=sin2x+sin xcos x
=-cos 2x+sin 2x
=sin+,
所以f(x)的最小正周期T==π.
(2)由(1)知,f(x)=sin+.
由题意知-≤x≤m,
所以-≤2x-≤2m-.
要使得f(x)在区间上的最大值为,
即sin在区间上的最大值为1,
所以2m-≥,即m≥.
所以m的最小值为.
化归思想和整体代换思想在三角函数中的应用
讨论形如y=asin ωx+bcos ωx型函数的性质,一律化成y=sin(ωx+φ)型的函数;研究y=Asin(ωx+φ)型函数的最值、单调性,可将ωx+φ视为一个整体,换元后结合y=sin x的图象解决.
例 已知函数f(x)=4tan x·sin·cos-.
(1)求f(x)的定义域与最小正周期;
(2)讨论f(x)在区间上的单调性.
解 (1)f(x)的定义域为.
f(x)=4tan xcos xcos-
=4sin xcos-=4sin x-
=2sin xcos x+2sin2x-=sin 2x+(1-cos 2x)-
=sin 2x-cos 2x=2sin.
所以f(x)的最小正周期T==π.
(2)因为x∈,所以2x-∈,
由y=sin x的图象可知,当2x-∈,
即x∈时,f(x)单调递减;
当2x-∈,即x∈时,f(x)单调递增.
所以当x∈时,f(x)在区间上单调递增,在区间上单调递减.
1.(2018·乌海质检)若sin=,则cos 等于( )
A.- B.- C. D.
答案 A
解析 cos=cos
=-cos=-
=-=-.
2.等于( )
A.- B. C. D.1
答案 C
解析 原式=
===.
3.已知sin 2α=,tan(α-β)=,则tan(α+β)等于( )
A.-2 B.-1 C.- D.
答案 A
解析 由题意,可得cos 2α=-,则tan 2α=-,tan(α+β)=tan[2α-(α-β)]==-2.
4.在斜三角形ABC中,sin A=-cos Bcos C,且tan B·tan C=1-,则角A的值为( )
A. B. C. D.
答案 A
解析 由题意知,sin A=sin(B+C)=sin Bcos C+cos Bsin C=-cos Bcos C,
在等式-cos Bcos C=sin Bcos C+cos Bsin C两边同除以cos Bcos C,得tan B+tan C=
-,
又tan(B+C)==-1=-tan A,
即tan A=1,
因为0