- 108.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
陕西省渭南市韩城市司马迁中学2020届高三下学期第九次周测数学试卷
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={1,2,3},B={2,3,4},则A∪B=()
A.{1,2,3,4} B.{1,2,3}
C.{2,3,4} D.{1,3,4}
2.函数f(x)=+的定义域为( )
A.[0,2) B.(2,+∞)
C.[0,2)∪(2,+∞) D.(-∞,2)∪(2,+∞)
3.集合中的角所表示的范围(阴影部分)是( )
4.为了得到函数y=2sin的图象,可以将函数y=2sin 2x的图象( )
A.向右平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向左平移个单位长度
5.设函数f(x)=cos,则下列结论错误的是( )
A.f(x)的一个周期为-2π
B.y=f(x)的图象关于直线x=对称
C.f(x+π)的一个零点为x=
D.f(x)在单调递减
6.如果f=,则当x≠0且x≠1时,f(x)等于( )
A. B. C. D.-1
7.最小正周期为π且图象关于直线x=对称的函数是( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
8.函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )
A.[-2,2] B.[-1,1]
C.[0,4] D.[1,3]
9.已知函数f(x)=log2x+,若x1∈(1,2),x2∈(2,+∞),则( )
A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0
10.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=( )
A.-e B.-1
C.1 D.e
11.已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图所示,则f(x)的图象可能是( )
12.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( )
A.1 B.4
C.1或4 D.2或4
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数f(x)=,则该函数的单调递增区间为________.
14.已知α是三角形的内角,且sin α+cos α=,则tan α=________.
15已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.
16.(理科) 设f(x)=则ʃf(x)dx的值为________.
16.(文科)已知函数f(x)的定义域是[0,4],则f(x+1)+f(x-1)的定义域是________.
三、解答题:共70分。解答应写出文字说明、解答过程或演算步骤。
17. (10分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.
18. (12分)已知函数f(x)=sin2x-cos2x-2sin xcos x(x∈R).
(1)求f的值;
(2)求f(x)的最小正周期及单调递增区间.
19.(12分)已知点M是曲线y=x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:
(1)斜率最小的切线方程;
(2)切线l的倾斜角α的取值范围.
20.(12分)已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.
(1)写出函数y=f(x)的解析式.
(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.
21.(12分)已知f(x)=ln x-(a∈R).
(1)若函数f(x)的图象在点(1,f(1))处的切线平行于直线x+y=0,求a的值;
(2)讨论函数f(x)在定义域上的单调性.
22.(12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值.
(1)求a,b,c的值.
(2)求y=f(x)在[-3,1]上的最大值和最小值.
一、选择题:
1
2
3
4
5
6
7
8
9
10
11
12
A
C
C
A
D
A
B
D
B
B
D
C
二、填空题:本题共4小题,每小题5分,共20分。
13
14
15
16文 16理
[3,+∞)
-
6
[1,3] +
三、解答题:共70分。解答应写出文字说明、解答过程或演算步骤。
17. (10分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.
解 由x2-8x-20≤0,得-2≤x≤10,
∴P={x|-2≤x≤10}.
由x∈P是x∈S的必要条件,知S⊆P.
则
∴当0≤m≤3时,x∈P是x∈S的必要条件,
即所求m的取值范围是[0,3].
18. (12分) 已知函数f(x)=sin2x-cos2x-2sin xcos x(x∈R).
(1)求f的值;
(2)求f(x)的最小正周期及单调递增区间.
解 (1)由sin =,cos =-,得
f=2-2-2××=2.
(2)由cos 2x=cos2x-sin2x与sin 2x=2sin xcos x,
得f(x)=-cos 2x-sin 2x=-2sin.
所以f(x)的最小正周期是π.
由正弦函数的性质,得
+2kπ≤2x+≤+2kπ,k∈Z,
解得+kπ≤x≤+kπ,k∈Z.
所以f(x)的单调递增区间为
(k∈Z).
19.(12分)已知点M是曲线y=x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:
(1)斜率最小的切线方程;
(2)切线l的倾斜角α的取值范围.
解:(1)∵y′=x2-4x+3=(x-2)2-1,
∴当x=2时,y′min=-1,此时y=,
∴斜率最小时的切点为,斜率k=-1,
∴切线方程为3x+3y-11=0.
(2)由(1)得k≥-1,∴tan α≥-1,
又∵α∈[0,π),∴α∈∪.
故α的取值范围为∪.
20.(12分)已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.
(1)写出函数y=f(x)的解析式.
(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.
解:(1)设x<0,则-x>0,
所以f(-x)=x2+2x.又因为f(x)是奇函数,
所以f(x)=-f(-x)=-x2-2x.
所以f(x)=
(2)方程f(x)=a恰有3个不同的解,
即y=f(x)与y=a的图象有3个不同的交点.
作出y=f(x)与y=a的图象如图所示,故若方程f(x)=a恰有3个不同的解,只需-1<a<1,
故a的取值范围为(-1,1).
21.(12分)已知f(x)=ln x-(a∈R).
(1)若函数f(x)的图象在点(1,f(1))处的切线平行于直线x+y=0,求a的值;
(2)讨论函数f(x)在定义域上的单调性.
解:(1)因为f′(x)=+,
所以由题意可知f′(1)=1+a=-1,故a=-2.
(2)f′(x)=+=(x>0),
当a≥0时,因为x>0,所以f′(x)>0,
故f(x)在(0,+∞)上为增函数;
当a<0时,由f′(x)=>0,得x>-a;
由f′(x)=<0,得0<x<-a,
所以f(x)在(0,-a)上为减函数,在(-a,+∞)上为增函数.
综上所述,当a≥0时,f(x)在(0,+∞)上为增函数;
当a<0时,f(x)在(0,-a)上为减函数,在(-a,+∞)上为增函数.
22.(12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值.
(1)求a,b,c的值.
(2)求y=f(x)在[-3,1]上的最大值和最小值.
解: (1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b.
当x=1时,切线l的斜率为3,可得2a+b=0,①
当x=时,y=f(x)有极值,则f′=0,
可得4a+3b+4=0,②
由①②,解得a=2,b=-4.
由于切点的横坐标为1,纵坐标为4,所以f(1)=4.
所以1+a+b+c=4,得c=5.
(2)由(1)可得f(x)=x3+2x2-4x+5,
f′(x)=3x2+4x-4.
令f′(x)=0,解得x=-2或x=.
当x变化时,f′(x),f(x)的取值及变化情况如表所示:
x
-3
(-3,-2)
-2
1
f′(x)
+
+
0
-
0
+
+
f(x)
8
13
4
所以y=f(x)在[-3,1]上的最大值为13,最小值为.