- 520.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第5节 空间直角坐标系与空间向量
考试要求 1.了解空间直角坐标系,会用空间直角坐标系刻画点的位置;2.借助特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式;3.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;4.掌握空间向量的线性运算及其坐标表示;5.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.
知 识 梳 理
1.空间向量的有关概念
名称
定义
空间向量
在空间中,具有大小和方向的量
相等向量
方向相同且模相等的向量
相反向量
方向相反且模相等的向量
共线向量
(或平行向量)
表示空间向量的有向线段所在的直线互相平行或重合的向量
共面向量
平行于同一个平面的向量
2.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=,则称a与b互相垂直
,记作a⊥b.
②非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律:
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
加法
a+b
(a1+b1,a2+b2,a3+b3)
减法
a-b
(a1-b1,a2-b2,a3-b3)
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3=0
模
|a|
夹角
〈a,b〉(a≠0,b≠0)
cos〈a,b〉=
[微点提醒]
1.在平面中A,B,C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点.
2.在空间中P,A,B,C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间任意一点.
3.向量的数量积满足交换律、分配律,即a·b=b·a,a·(b+c)=a·b+a·c成立,但不满足结合律,即(a·b)·c=a·(b·c)不一定成立.
4.若向量α的投影向量是γ,则向量α-γ与向量γ垂直,当向量γ与向量α起点相同时,终点间的距离最小.
基 础 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)空间中任意两非零向量a,b共面.( )
(2)对任意两个空间向量a,b,则a·b=0,则a⊥b.( )
(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.( )
(4)若a·b<0,则〈a,b〉是钝角.( )
解析 对于(2),因为0与任何向量数量积为0,所以(2)不正确;对于(3),若a,b,c中有一个是0,则a,b,c共面,所以(3)不正确;对于(4),若〈a,b〉=π,则a·b<0,故(4)不正确.
答案 (1)√ (2)× (3)× (4)×
2.(选修2-1P97A2改编)如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,1=c,则下列向量中与相等的向量是( )
A.-a+b+c B.a+b+c
C.-a-b+c D.a-b+c
解析 由题意,根据向量运算的几何运算法则,=1+=1+(-)=c+(b-a)=-a+b+c.
答案 A
3.(选修2-1P118A6改编)已知a=(cos θ,1,sin θ),b=(sin θ,1,cos θ),则向量a+b与a-b的夹角是________.
解析 a+b=(cos θ+sin θ,2,cos θ+sin θ),
a-b=(cos θ-sin θ,0,sin θ-cos θ),
∴(a+b)·(a-b)=(cos2 θ-sin2 θ)+(sin2 θ-cos2 θ)=0,
∴(a+b)⊥(a-b),则a+b与a-b的夹角是.
答案
4.(2018·济宁一中月考)在空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是( )
A.垂直 B.平行
C.异面 D.相交但不垂直
解析 由题意得,=(-3,-3,3),=(1,1,-1),
∴=-3,∴与共线,又AB与CD没有公共点.
∴AB∥CD.
答案 B
5.(2019·北京四中月考)已知a=(2,3,1),b=(-4,2,x),且a⊥b,则|b|=________.
解析 a·b=2×(-4)+3×2+1·x=0,∴x=2,
∴|b|==2.
答案 2
6.(2019·杭州二中月考)O为空间中任意一点,A,B,C三点不共线,且=++t,若P,A,B,C四点共面,则实数t=________.
解析 ∵P,A,B,C四点共面,∴++t=1,∴t=.
答案
考点一 空间向量的线性运算
【例1】 如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);(2)+.
解 (1)因为P是C1D1的中点,所以=++=a++
=a+c+=a+c+b.
(2)因为M是AA1的中点,所以=+
=+
=-a+=a+b+c.
又=+=+
=+=c+a,
所以+=+
=a+b+c.
规律方法 (1)选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.
(2)首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则.
提醒 空间向量的坐标运算类似于平面向量中的坐标运算.
【训练1】 在三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量,,表示,.
解 =+=+
=+(-)=+
=-++
=+=-++
=++.
考点二 共线定理、共面定理的应用
【例2】 已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,用向量方法求证:
(1)E,F,G,H四点共面;
(2)BD∥平面EFGH.
证明 (1)连接BG,则=+=+(+)=++=+,由共面向量定理知E,F,G,H四点共面.
(2)因为=-=-=(-)=,
因为E,H,B,D四点不共线,
所以EH∥BD.
又EH⊂平面EFGH,BD⊄平面EFGH,
所以BD∥平面EFGH.
规律方法 (1)证明空间三点P,A,B共线的方法
①=λ(λ∈R);
②对空间任一点O,=x+y(x+y=1).
(2)证明空间四点P,M,A,B共面的方法
①=x+y;
②对空间任一点O,=x+y+z(x+y+z=1);
③∥(或∥或∥).
(3)三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.
【训练2】 如图所示,已知斜三棱柱ABC-A1B1C1,点M,N分别在AC1和BC上,且满足=k,=k(0≤k≤1).
(1)向量是否与向量,共面?
(2)直线MN是否与平面ABB1A1平行?
解 (1)因为=k,=k,
所以=++
=k++k
=k(+)+
=k(+)+
=k+=-k
=-k(+)
=(1-k)-k,
所以由共面向量定理知向量与向量,共面.
(2)当k=0时,点M,A重合,点N,B重合,
MN在平面ABB1A1内,
当0