- 244.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题强化训练
1.已知函数f(x)=(m2-m-5)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是( )
A.-2 B.4
C.3 D.-2或3
解析:选C.f(x)=(m2-m-5)xm是幂函数⇒m2-m-5=1⇒m=-2或m=3.
又在x∈(0,+∞)上是增函数,所以m=3.
2.函数y=ax+2-1(a>0且a≠1)的图象恒过的点是( )
A.(0,0) B.(0,-1)
C.(-2,0) D.(-2,-1)
解析:选C.法一:因为函数y=ax(a>0,a≠1)的图象恒过点(0,1),将该图象向左平移2个单位,再向下平移1个单位得到y=ax+2-1(a>0,a≠1)的图象,所以y=ax+2-1(a>0,a≠1)的图象恒过点(-2,0),选项C正确.
法二:令x+2=0,x=-2,得f(-2)=a0-1=0,所以y=ax+2-1(a>0,a≠1)的图象恒过点(-2,0),选项C正确.
3.(2019·温州模拟)已知a=log20.2,b=20.2,c=0.20.3,则( )
A.a1,c=0.20.3∈(0,1),所以a0,a≠1)满足f(1)=,则f(x)的单调递减区间是( )
A.(-∞,2] B.[2,+∞)
C.[-2,+∞) D.(-∞,-2]
解析:选B.由f(1)=得a2=.又a>0,所以a=,因此f(x)=.因为g(x)=|2x-4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).
8.(2019·金华十校联考)函数f(x)=,若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是( )
A.(24,25) B.[16,25)
C.(1,25) D.(0,25]
解析:选A.函数f(x)的图象如图所示:
若a、b、c、d互不相同,
且f(a)=f(b)=f(c)=f(d),
不妨令a0,则y=|x2-a|与y=ax+1两个图象有四个不同的交点,
①当y=ax+1与y=-x2+a相切时,得a=-2+2.(负值舍掉)
②当y=ax+1过点(-,0)时,得a=1,
所以2-2