- 171.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第三节 简单的逻辑联结词、全称量词与存在量词
[考纲传真] (教师用书独具)1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.
(对应学生用书第5页)
[基础知识填充]
1.简单的逻辑联结词
(1)命题中的“或”“且”“非”叫做逻辑联结词.
(2)命题p∧q,p∨q,綈p的真假判断
p
q
p∧q
p∨q
綈p
真
真
真
真
假
真
假
假
真
假
假
真
假
真
真
假
假
假
假
真
2. 全称量词与存在量词
(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示.
(2)全称命题:含有全称量词的命题,叫做全称命题.
全称命题“对M中任意一个x,有p(x)成立”简记为∀x∈M,p(x).
(3)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用符号“∃”表示.
(4)特称命题:含有存在量词的命题,叫做特称命题.特称命题“存在M中的一个元素x0,使p(x0)成立”,简记为∃x0∈M,p(x0).
3.含有一个量词的命题的否定
命题
命题的否定
∀x∈M,p(x)
∃x0∈M,綈p(x0)
∃x0∈M,p(x0)
∀x∈M,綈p(x)
[知识拓展]
1.含有逻辑联结词的命题真假的判断规律
(1)p∨q:p、q中有一个为真,则p∨q为真,即有真为真;
(2)p∧q:p、q中有一个为假,则p∧q为假,即有假即假;
(3)綈p:与p的真假相反,即一真一假,真假相反.
2.含一个量词的命题的否定的规律是“改量词,否结论”.
[基本能力自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)命题“5>6或5>2”是假命题.( )
(2)命题綈(p∧q)是假命题,则命题p,q中至少有一个是假命题.( )
(3)“长方形的对角线相等”是特称命题.( )
(4)命题“对顶角相等”的否定是“对顶角不相等”.( )
[解析] (1)错误.命题p∨q中,p,q有一真则真.
(2)错误.p∧q是真命题,则p,q都是真命题.
(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题.
(4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”.
[答案] (1)× (2)× (3)× (4)×
2.(教材改编)已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为( )
A.1 B.2
C.3 D.4
B [p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.]
3.(2015·全国卷Ⅰ)设命题p:∃n∈N,n2>2n,则綈p为( )
A.∀n∈N,n2>2n B.∃n∈N,n2≤2n
C.∀n∈N,n2≤2n D.∃n∈N,n2=2n
C [因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”.故选C.]
4.(2018·韶关模拟)下列命题中的假命题是( )
A.∀x∈R,2x-1>0
B.∀x∈N*,(x-1)2>0
C.∃x∈R,lg x<1
D.∃x∈R,tan x=2
B [当x=1时,(x-1)2=0,故B是假命题.]
5.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.
【导学号:79170008】
[-8,0] [当a=0时,不等式显然成立.
当a≠0时,依题意知
解得-8≤a<0.
综上可知-8≤a≤0.]
(对应学生用书第6页)
含有逻辑联结词的命题的真假判断
设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥C.则下列命题中真命题是( )
A.p∨q B.p∧q
C.(綈p)∧(綈q) D.p∧(綈q)
A [取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,∴p是假命题.
a,b,c是非零向量,
由a∥b知a=xb,由b∥c知b=yc,
∴a=xyc,∴a∥c,∴q是真命题.
综上知p∨q是真命题,p∧q是假命题.
又∵綈p为真命题,綈q为假命题,
∴(綈p)∧(綈q),p∧(綈q)都是假命题.]
[规律方法] 1.“p∨q”“p∧q”“綈p”形式的命题真假判断的关键是对
逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成
形式;(2)判断其中命题p,q的真假;(3)确定“p∨q”“p∧q”“綈p”形式
的命题的真假.
2.p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p则是“与p的真假相反”.
[变式训练1] (2017·石家庄一模)命题p:若sin x>sin y,则x>y;命题q:x2+y2≥2xy.下列命题为假命题的是( )
A.p∨q B.p∧q
C.q D.綈p
B [取x=,y=,可知命题p不正确;由(x-y)2≥0恒成立,可知命题q正确.
故綈p为真命题,p∨q是真命题,p∧q是假命题.]
全称命题、特称命题
角度1 含有一个量词的命题的否定
(2015·湖北高考)命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是( )
【导学号:79170009】
A.∀x∈(0,+∞),ln x≠x-1
B.∀x∉(0,+∞),ln x=x-1
C.∃x0∈(0,+∞),ln x0≠x0-1
D.∃x0∉(0,+∞),ln x0=x0-1
A [改变原命题中的三个地方即可得其否定,∃改为∀,x0改为x,否定结论,即ln x≠x-1,故选A.]
角度2 全称命题、特称命题的真假判断
(2018·青岛模拟)已知a>0,函数f(x)=ax2+bx+c,若x1满足关于x的方程2ax+b=0,则下列选项中的命题为假命题的是( )
A.存在x∈R,使得f(x)≤f(x1)
B.存在x∈R,使得f(x)≥f(x1)
C.对任意x∈R,都有f(x)≤f(x1)
D.对任意x∈R,都有f(x)≥f(x1)
C [由题意知2ax1+b=0,即x1=-,
又f(x)=a2+,故f(x)min=f(x1).
因此,A,B,D正确,C错误.]
[规律方法] 1.否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论.
2.要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题.
3.要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立.只要找到一个反例,则该命题为假命题.
由命题的真假求参数的取值范围
(1)已知命题“∃x0∈R,使2x+(a-1)x0+≤0”是假命题,则实数a的取值范围是( )
A.(-∞,-1) B.(-1,3)
C.(-3,+∞) D.(-3,1)
(2)已知p:∃x0∈R,mx+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围为( )
A.m≥2 B.m≤-2
C.m≤-2或m≥2 D.-2≤m≤2
(1)B (2)A [(1)原命题的否定为∀x∈R,2x2+(a-1)x+>0,由题意知,为真命题,
则Δ=(a-1)2-4×2×<0,
则-2<a-1<2,则-1<a<3.
(2)依题意知,p,q均为假命题.当p是假命题时,∀x∈R,mx2+1>0恒成立,则有m≥0;当q是假命题时,则有Δ=m2-4≥0,m≤-2或m≥2.
因此,由p,q均为假命题得
即m≥2.]
[规律方法] 1.根据含逻辑联结词命题的真假求参数的方法步骤:
(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况).
(2)求出每个命题是真命题时参数的取值范围.
(3)根据每个命题的真假情况,求出参数的取值范围.
2.全称命题可转化为恒成立问题.
[变式训练2] (2018·泰安模拟)若“∀x∈,tan x≤m”是真命题,则实数m的最小值为________.
1 [∵0≤x≤,∴0≤tan x≤1,
由“∀x∈,tan x≤m”是真命题,得m≥1.
故实数m的最小值为1.]