- 86.50 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
选修2-2 1.1 第2课时 导数的概念
一、选择题
1.函数在某一点的导数是( )
A.在该点的函数值的增量与自变量的增量的比
B.一个函数
C.一个常数,不是变数
D.函数在这一点到它附近一点之间的平均变化率
[答案] C
[解析] 由定义,f′(x0)是当Δx无限趋近于0时,无限趋近的常数,故应选C.
2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )
A.6 B.18
C.54 D.81
[答案] B
[解析] ∵s(t)=3t2,t0=3,
∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-3·32
=18Δt+3(Δt)2∴=18+3Δt.
当Δt→0时,→18,故应选B.
3.y=x2在x=1处的导数为( )
A.2x B.2
C.2+Δx D.1
[答案] B
[解析] ∵f(x)=x2,x=1,
∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2·Δx+(Δx)2
∴=2+Δx
当Δx→0时,→2
∴f′(1)=2,故应选B.
4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( )
A.37 B.38
C.39 D.40
[答案] D
[解析] ∵==40+4Δt,
∴s′(5)=li =li (40+4Δt)=40.故应选D.
5.已知函数y=f(x),那么下列说法错误的是( )
A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量
B.=叫做函数在x0到x0+Δx之间的平均变化率
C.f(x)在x0处的导数记为y′
D.f(x)在x0处的导数记为f′(x0)
[答案] C
[解析] 由导数的定义可知C错误.故应选C.
6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )
A.f′(x0)=f(x0+Δx)-f(x0)
B.f′(x0)=li[f(x0+Δx)-f(x0)]
C.f′(x0)=
D.f′(x0)=li
[答案] D
[解析] 由导数的定义知D正确.故应选D.
7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )
A.4a B.2a+b
C.b D.4a+b
[答案] D
[解析] ∵=
=4a+b+aΔx,
∴y′|x=2=li =li (4a+b+a·Δx)=4a+b.故应选D.
8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )
A.圆 B.抛物线
C.椭圆 D.直线
[答案] D
[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.
9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )
A.0 B.3
C.-2 D.3-2t
[答案] B
[解析] ∵==3-Δt,
∴s′(0)=li =3.故应选B.
10.设f(x)=,则li 等于( )
A.- B.
C.- D.
[答案] C
[解析] li =li
=li =-li =-.
二、填空题
11.已知函数y=f(x)在x=x0处的导数为11,则
li=________;
li =________.
[答案] -11,-
[解析] li
=-li =-f′(x0)=-11;
li =-li
=-f′(x0)=-.
12.函数y=x+在x=1处的导数是________.
[答案] 0
[解析] ∵Δy=-
=Δx-1+=,
∴=.∴y′|x=1=li =0.
13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.
[答案] 2
[解析] ∵==a,
∴f′(1)=li =a.∴a=2.
14.已知f′(x0)=li ,f(3)=2,f′(3)=-2,则li 的值是________.
[答案] 8
[解析] li =li
+li .
由于f(3)=2,上式可化为
li -3li =2-3×(-2)=8.
三、解答题
15.设f(x)=x2,求f′(x0),f′(-1),f′(2).
[解析] 由导数定义有f′(x0)
=li
=li =li =2x0,
16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.
[解析] 位移公式为s=at2
∵Δs=a(t0+Δt)2-at=at0Δt+a(Δt)2
∴=at0+aΔt,
∴li =li =at0,
已知a=5.0×105m/s2,t0=1.6×10-3s,
∴at0=800m/s.
所以枪弹射出枪口时的瞬时速度为800m/s.
17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1) (2)f′(1).
[解析] (1)=
==2+Δx.
(2)f′(1)=
= (2+Δx)=2.
18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.
[解析] f(x)=
Δy=f(0+Δx)-f(0)=f(Δx)
=
∴ = (1+Δx)=1,
= (-1-Δx)=-1,
∵ ≠ ,∴Δx→0时,无极限.
∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)