• 161.00 KB
  • 2021-07-01 发布

【数学】2020届一轮复习人教B版三角恒等变换与解三角形学案

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1.两角和与差的正弦、余弦、正切公式 ‎(1)sin(α±β)=sin αcos β±cos αsin β;‎ ‎(2)cos(α±β)=cos αcos β∓sin αsin β;‎ ‎(3)tan(α±β)=.‎ ‎2.二倍角的正弦、余弦、正切公式 ‎(1)sin 2α=2sin αcos α;‎ ‎(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;‎ ‎(3)tan 2α=.‎ ‎ (1)已知α∈,tan α=2,则cos=__________.‎ ‎(2)若tan(α-)=,则tan α=________.‎ ‎(3)(2019·洛阳第一次统考)若sin(-α)=,则cos(+2α)=________.‎ ‎【答案】 (1) (2) (3)- ‎【解析】 (1)因为α∈(0,),tan α=2,所以sin α=,cos α=,所以cos(α-)=cos αcos +sin αsin =×(+)=.‎ ‎(2)因为tan(α-)=, ‎ 所以tan α=tan[(α-)+]===.‎ ‎(3)依题意得cos(+2α)=-cos[π-(+2α)]=-cos [2(-α)]=2sin2(-α)-1=2×()2-1=-.‎ 三角恒等变换的“四大策略”‎ ‎(1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45°等;‎ ‎(2)项的分拆与角的配凑:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等;‎ ‎(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次;‎ ‎(4)弦、切互化:一般是切化弦.  ‎ ‎【对点训练】‎ ‎1.计算=________(用数字作答).‎ ‎【答案】: ‎【解析】:====.‎ ‎2.(2019·合肥模拟)若α∈(0,),cos(-α)=2cos 2α,则sin 2α=________.‎ ‎【答案】: 正、余弦定理在解三角形中的应用 考向1 求解三角形中的角 ‎1.正弦定理及其变形 在△ABC中,===2R(R为△ABC的外接圆半径).变形:a=2Rsin A,sin A=,a∶b∶c=sin A∶sin B∶sin C等. ‎ ‎(2)若a+c=6,△ABC的面积为2,求b.‎ ‎【解析】:(1)由题设及A+B+C=π得sin B=8sin2,故 sin B=4(1-cos B).‎ 上式两边平方,整理得17cos2B-32cos B+15=0,‎ 解得cos B=1(舍去),cos B=.‎ ‎(2)由cos B=得sin B=,‎ 故S△ABC=acsin B=ac.又S△ABC=2,则ac=.‎ 由余弦定理及a+c=6得 b2=a2+c2-2accos B ‎=(a+c)2-2ac(1+cos B)‎ ‎=36-2×× ‎=4.‎ 所以b=2.‎ 解三角形的创新交汇问题 以三角恒等变换、正、余弦定理为解题工具,常与三角函数、向量、不等式等交汇命题,且三种题型均可能出现.‎ ‎ (2019洛阳第一次统考)如图,平面四边形ABDC中,∠CAD=∠BAD=30°.‎ ‎(1)若∠ABC=75°,AB=10,且AC∥BD,求CD的长;‎ ‎(2)若BC=10,求AC+AB的取值范围.‎ ‎【解析】 (1)由已知,易得∠ACB=45°, ‎ 在△ABC中,=⇒BC=5.‎ 因为AC∥BD,所以∠ADB=∠CAD=30°,∠CBD=∠ACB=45°,在△ABD中,∠ADB=30°=∠BAD,所以DB=AB=10.‎ 在△BCD中,CD==5.‎ ‎(2)AC+AB>BC=10,‎ cos 60°=⇒(AB+AC)2-100=3AB·AC,‎ 而AB·AC≤()2,‎ 所以≤()2,‎ 解得AB+AC≤20,‎ 故AB+AC的取值范围为(10,20].‎ 与解三角形有关的交汇问题的关注点 ‎(1)根据条件恰当选择正弦、余弦定理完成边角互化.‎ ‎(2)结合内角和定理、面积公式等,灵活运用三角恒等变换公式.  ‎ ‎【对点训练】‎ ‎(2017·高考山东卷)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,·=-6,S△ABC=3,求A和a.‎ ‎【解析】:因为·=-6,‎ 所以bccos A=-6,‎ 又S△ABC=3,‎ 所以bcsin A=6,‎ 因此tan A=-1,又0