• 382.00 KB
  • 2021-07-01 发布

高考数学专题复习:《圆锥曲线》单元测试题1

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎《圆锥曲线》单元测试题1‎ 一、选择题 ‎1、若不论为何值,直线与曲线总有公共点,则的取值范围是( )‎ A. B. C. D.‎ ‎2、若椭圆的离心率是,则双曲线的离心率是( ) ‎ ‎ A. B. C. D. ‎ ‎3、若双曲线的渐近线l方程为,则双曲线焦点F到渐近线l的距离为 ‎ A.2 B. C. D.2‎ ‎4、直线与抛物线交于A、B两点,O为坐标原点,且,则( )‎ ‎ ‎ ‎5、若直线过点与双曲线只有一个公共点,则这样的直线有( )‎ A.1条 B.2条 C.3条 D.4条 ‎6、已知双曲线中心在原点且一个焦点为,直线与其交于两点, 中点的横坐标为,则此双曲线的方程是( )‎ A. B. C. D.‎ ‎7、设离心率为的双曲线(,)的右焦点为,直线过点且斜率为,则直线与双曲线的左、右两支都相交的充要条件是 (  )‎ A. B. C. D. ‎ ‎8、已知定点M(1,给出下列曲线方程:‎ ‎① 4x+2y-1=0 ②③④在曲线上存在点P满足的所有曲线方程是 ‎ ‎( )‎ ‎(A)①③ (B)②④ (C)①②③ (D)②③④‎ ‎9、椭圆的焦点在轴上,长轴长是短轴长的两倍,则的值为( )‎ ‎ A. B. C. 2 D.4‎ ‎10、双曲线两条渐近线的夹角为60º,该双曲线的离心率为( )‎ A.或2 B.或 C.或2 D.或 二、填空题 ‎11、椭圆和双曲线的公共点为是两曲线的一个交点, 那么的值是__________________。‎ ‎12、椭圆的焦点为F1、F2,过点F1作直线与椭圆相交,被椭圆截得的最短的线段MN长为,的周长为20,则椭圆的离心率为 __________‎ ‎13、双曲线和直线有交点,则它的离心率的取值范围是______________‎ ‎14、若焦点在轴上的椭圆上有一点,使它与两焦点的连线互相垂直,则正数的取值范围是_______________‎ ‎15、.抛物线的焦点坐标是 ;‎ 三、解答题 ‎16、(13分) 设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.‎ ‎  (1)求双曲线C的离心率e的值;‎ ‎  (2)若双曲线C被直线y=ax+b截得的弦长为,求双曲线c的方程.‎ ‎17、(12分) 已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率。‎ ‎ (I)求椭圆的方程;‎ ‎ (II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标为,求直线l倾斜角的取值范围。‎ ‎18、(12分)已知动点P与平面上两定点连线的斜率的积为定值.‎ ‎(Ⅰ)试求动点P的轨迹方程C.‎ ‎(Ⅱ)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.‎ ‎19、已知向量m1=(0,x),n1=(1,1),m2=(x,0),n2=(y2,1)(其中x,y是实数),‎ 又设向量m=m1+n2,n=m2-n1,且m//n,点P(x,y)的轨迹为曲线C.‎ ‎(Ⅰ)求曲线C的方程;‎ ‎(Ⅱ)设直线与曲线C交于M、N两点,当|MN|=时,求直线l的方程.‎ ‎20、(13分)已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为.‎ ‎(1)求椭圆的方程.‎ ‎(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.‎ 以下是答案 一、选择题 ‎1、B ‎2、B ‎3、C ‎4、A ‎5、C ‎6、B ‎7、D ‎8、A ‎9、A ‎10、B 二、填空题 ‎11、 ‎ ‎12、 ‎ ‎13、 ‎ ‎14、 ‎ ‎15、;‎ 三、解答题 ‎16、解析:(1)双曲线C的右准线l的方程为:x=,两条渐近线方程为:.‎ ‎  ∴ 两交点坐标为 ,、,.‎ ‎  ∵ △PFQ为等边三角形,则有(如图).‎ ‎  ∴ ,即.‎ ‎  解得 ,c=‎2a.∴ .‎ ‎  (2)由(1)得双曲线C的方程为把.‎ ‎  把代入得.‎ ‎  依题意  ∴ ,且.‎ ‎  ∴ 双曲线C被直线y=ax+b截得的弦长为 ‎  ‎ ‎   ‎ ‎  ∵ . ∴ .‎ ‎  整理得 .‎ ‎  ∴ 或.‎ ‎∴ 双曲线C的方程为:‎ 或 ‎17、解:(I)设椭圆方程为 ‎ 解得 a=3,所以b=1,故所求方程为 ‎ ‎ (II)设直线l的方程为代入椭圆方程整理得 ‎ ‎ ‎ 由题意得 ‎ ‎ 解得 又直线l与坐标轴不平行 ‎ 故直线l倾斜角的取值范围是 ‎ ‎18、解:设点,则依题意有,整理得由于,所以求得的曲线C的方程为 ‎19、(I)由已知,‎ ‎ ‎ ‎ ‎ ‎ 即所求曲线的方程是:‎ ‎(Ⅱ)由 解得x1=0, x2=分别为M,N的横坐标)‎ 由 所以直线l的方程x-y+1=0或x+y-1=0. ‎ ‎20、解析:(1)直线AB方程为:bx-ay-ab=0.‎ ‎  依题意 解得 ‎ ‎∴ 椭圆方程为 . ‎ ‎(2)假若存在这样的k值,由得.‎ ‎  ∴ .                    ①‎ ‎  设,、,,则            ②‎ 而.‎ 要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时,则,即.‎ ‎.               ③‎ ‎  将②式代入③整理解得.经验证,,使①成立.‎ ‎  综上可知,存在,使得以CD为直径的圆过点E. ‎

相关文档