- 133.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课后限时集训2
命题及其关系、充分条件与必要条件
建议用时:45分钟
一、选择题
1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )
A.逆命题 B.否命题
C.逆否命题 D.否定
B [命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.]
2.原命题“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )
A.0 B.1
C.2 D.4
C [当c=0时,ac2=bc2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有2个.]
3.设x∈R,则“2-x≥0”是“(x-1)2≤1”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
B [2-x≥0,则x≤2,(x-1)2≤1,则-1≤x-1≤1,即0≤x≤2,据此可知:“2-x≥0”是“(x-1)2≤1”的必要不充分条件.]
4.设x∈R,则“<”是“x3<1”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
A [由<,得0<x<1,所以0<x3<1;由x3<1,得x<1,不能推出0<x
- 5 -
<1.所以“<”是“x3<1”的充分而不必要条件.故选A.]
5.(2019·庆阳模拟)有下列命题:
①“若x+y>0,则x>0且y>0”的否命题;
②“矩形的对角线相等”的否命题;
③“若m>1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;
④“若a+7是无理数,则a是无理数”的逆否命题.
其中为真命题的是( )
A.①②③ B.②③④
C.①③④ D.①④
C [①的逆命题为“若x>0且y>0,则x+y>0”为真,故否命题为真;
②的否命题为“不是矩形的图形对角线不相等”,为假命题;
③的逆命题为“若mx2-2(m+1)x+m+3>0的解集为R,则m>1”,
∵当m=0时,解集不是R,
∴应有即m>1.
∴③是真命题;
④原命题为真,逆否命题也为真.
综上得①③④为真命题,故选C.]
6.下列说法正确的是( )
A.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”
B.“x=-1”是“x2-x-2=0”的必要不充分条件
C.命题“若x=y,则sin x=sin y”的逆否命题是真命题
D.“tan x=1”是“x=”的充分不必要条件
C [对A项,由原命题与否命题的关系知,原命题的否命题是“若x2≠1,则x≠1”,即A错误;因为x2-x-2=0⇔x=-1或x=2,所以由“x=-1”能推出“x2-x-2=0”,反之,由“x2-x-2=0”推不出“x=-1”,所以“x=-1”是“x2-x-2=0”的充分不必要条件,即B错误;因为由x=y能推出sin x=sin y,即原命题是真命题,所以它的逆否命题是真命题,故C正确;由x=能推出tan x=1,但由tan x=1推不出x=,所以“x=”是“tan x=1”的充分不必要条件,
即D错误.]
7.若x>2m2-3是-1<x<4的必要不充分条件,则实数m的取值范围是( )
A.[-3,3]
B.(-∞,-3]∪[3,+∞)
- 5 -
C.(-∞,-1]∪[1,+∞)
D.[-1,1]
D [∵x>2m2-3是-1<x<4的必要不充分条件,
∴(-1,4)(2m2-3,+∞),∴2m2-3≤-1,解得-1≤m≤1,故选D.]
二、填空题
8.在△ABC中,“A=B”是“tan A=tan B”的________条件.
充要 [由A=B,得tan A=tan B,反之,若tan A=tan B,则A=B+kπ,k∈Z.∵0<A<π,0<B<π,∴A=B,故“A=B”是“tan A=tan B”的充要条件.]
9.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
充分不必要 [当x>1,y>1时,x+y>2一定成立,即p⇒q,当x+y>2时,
可令x=-1,y=4,即q p,
故p是q的充分不必要条件.]
10.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.
k∈(-1,3) [直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于<,解之得-1<k<3.]
1.设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
C [由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,
即a2+9b2-6a·b=9a2+b2+6a·b.
因为a,b均为单位向量,所以a2=b2=1,
所以a·b=0,能推出a⊥b.
由a⊥b得|a-3b|=,|3a+b|=,
能推出|a-3b|=|3a+b|,
所以“|a-3b|=|3a+b|”是“a⊥b”的充要条件.]
2.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,“攻破楼兰”是“返回家乡”的( )
A.充分条件 B.必要条件
- 5 -
C.充要条件 D.既不充分也不必要条件
B [“不破楼兰终不还”的逆否命题为:“若返回家乡,则攻破楼兰”,所以“攻破楼兰”是“返回家乡”的必要条件.]
3.有下列几个命题:
①“若a>b,则a2>b2”的否命题;
②“若x+y=0,则x,y互为相反数”的逆命题;
③“若x2<4,则-2<x<2”的逆否命题.
其中真命题的序号是________.
②③ [①原命题的否命题为“若a≤b,则a2≤b2”,错误.
②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确.
③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.]
4.已知集合A=,B={x|-1<x<m+1,m∈R},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是________.
(2,+∞) [因为A=={x|-1<x<3},x∈B成立的一个充分不必要条件是x∈A,所以AB,
所以m+1>3,即m>2.]
1.下面四个条件中,使a>b成立的充分而不必要的条件是( )
A.a>b+1 B.a>b-1
C.a2>b2 D.a3>b3
A [a>b+1⇒a>b,但反之未必成立,故选A.]
2.给出下列说法:
①“若x+y=,则sin x=cos y”的逆命题是假命题;
②“在△ABC中,sin B>sin C是B>C的充要条件”是真命题;
③“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件;
④命题“若x<-1,则x2-2x-3>0”的否命题为“若x≥-1,则x2-2x-3≤0”.
以上说法正确的是________(填序号).
- 5 -
①②④ [对于①,“若x+y=,则sin x=cos y”的逆命题是“若sin x=cos y,则x+y=”,当x=0,y=时,有sin x=cos y成立,但x+y=,故逆命题为假命题,①正确;对于②,在△ABC中,由正弦定理得sin B>sin C⇔b>c⇔B>C,②正确;对于③,“a=±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.]
- 5 -