• 605.50 KB
  • 2021-07-01 发布

数学(理)卷·2017届内蒙古鄂尔多斯市高三模拟考试(2017

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
内蒙古鄂尔多斯市2017届高三模拟考试 数学(理)试题 第Ⅰ卷(共60分)‎ 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.若集合,集合,则( )‎ A. B. ‎ C. D.‎ ‎2.设为虚数单位,,则下列判断正确的是( )‎ A. B. C. D.‎ ‎3.根据下边框图,当输入为2017时,输出的为( )‎ A. B.10 C. 4 D. 2‎ ‎4.二项式的展开式中,存在常数项的一个充分条件是( )‎ A. B. C. D.‎ ‎5.把函数的图象向左平移个单位后,所得函数图象的一条对称轴为( )‎ A. B. C. D.‎ ‎6.《算术书》竹筒出土于上世纪八十年代,是我国现存最早的有系统的数学典籍,其中记载有求“囷(qun)盖”之术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式. 它实际上是将圆锥体积公式中的圆周率近似取为3,那么,近似公式相当于将圆锥体积公式中的近似取为( )‎ A. B. C. D.‎ ‎7.如图所示,在边长为1的正方形内任取一点,用表示事件“点恰好在由曲线与直线及轴所围成的曲边梯形内”, 表示事件“点恰好取自阴影部分内”,则( )‎ A. B. C. D.‎ ‎8.在等差数列中,若,则的值为( )‎ A.8 B. 12 C. 16 D.72‎ ‎9.某三棱锥的三视图如图所示,则该三棱锥的体积为( )‎ A. 1 B. C. D.‎ ‎10.函数的图象大致是( )‎ A. B. ‎ C. D.‎ ‎11.设点分别为双曲线:的左、右焦点,若在双曲线左支上存在一点,满足,点到直线的距离等于双曲线的实轴长,则该双曲线的离心率为( )‎ A. B. C. D.‎ ‎12.已知,若的图象与轴有3个不同的交点,则实数的取值范围为( )‎ A. B. C. D.‎ 第Ⅱ卷(共90分)‎ 二、填空题(每题5分,满分20分,将答案填在答题纸上)‎ ‎13.已知为坐标原点,点是线段上一点,且、,,则向量的坐标为 .‎ ‎14.已知实数满足,则的取值范围为 .‎ ‎15.在各项均为正数的等比数列中,,数列的前项积为,若,则的值为 .‎ ‎16.过抛物线:的焦点作直线与交于两点,线段的垂直平分线交轴于点,则 .‎ 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎17. 在中,内角所对的边为,且.‎ ‎(1)求角的大小;‎ ‎(2)若的最大边的边长为,且,求最小边长.‎ ‎18. 为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:‎ 某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,很据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:‎ ‎(1)求的值;‎ ‎(2)若从这辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;‎ ‎(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为(单位:万元),求的分布列和数学期望.‎ ‎19. 如图,在四面体中,,,,且.‎ ‎(1)设为的中点,证明:在上存在一点,使,并计算的值;‎ ‎(2)求二面角的平面角的余弦值.‎ ‎20. 已知动点到直线的距离是它到点的距离的倍.‎ ‎(1)求动点的轨迹的方程;‎ ‎(2)设轨迹上一动点满足:,其中是轨迹上的点,且直线与的斜率之积为,若为一动点,,为两定点,求的值.‎ ‎21. 设.‎ ‎(1)求的单调区间;‎ ‎(2)已知,若对所有,都有成立,求实数的取值范围.‎ 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.‎ ‎22.选修4-4:坐标系与参数方程 在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,若直线的参数方程为(为参数,为的倾斜角),曲线的极坐标方程为,射线,,与曲线分别交于不同于极点的三点.‎ ‎(1)求证:;‎ ‎(2)当时,直线过两点,求与的值.‎ ‎23.选修4-5:不等式选讲 已知函数的最小值为.‎ (1) 求的值;‎ ‎(2)若,,求的最大值.‎ 绝密★启用前 试卷类型:A ‎2017年鄂尔多斯市高考模拟考试 理数试题参考答案与评分标准 一、选择题:(每小题5分,共60分)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 选项 B D C B C B A C D A D A 二、填空题:(每小题5分,共20分)‎ ‎13. ; 14. ; 15. 5; 16. 2. ‎ 三、解答题:(共70分)‎ ‎17.解: (I) 由正弦定理,得, ‎ ‎∵, ∴. ‎ ‎∴,且 ‎∴, ‎ ‎ (II) 易知a为最大边,故 由,得. ∴最小边为长b.‎ 根据余弦定理,有.‎ ‎∴‎ ‎∴ 即最小边长为1.‎ ‎18.解:(I)易求,,,‎ ‎(II) ‎ ‎∴从这10辆纯电动乘用车中任选3辆,选到的3辆车续驶里程都不低于180公里的概率为 ‎(III)X所有可能的取值为5,6.5,8,8.5,10,12.‎ 其中,,,‎ ‎,,‎ ‎,‎ X ‎5‎ ‎6.5‎ ‎8‎ ‎8.5‎ ‎10‎ ‎12‎ P ‎0.09‎ ‎0.36‎ ‎0.36‎ ‎0.06‎ ‎0.12‎ ‎0.01‎ ‎∴X的分布列为 X ‎5‎ ‎6.5‎ ‎8‎ ‎8.5‎ ‎10‎ ‎12‎ P ‎0.09‎ ‎0.36‎ ‎0.36‎ ‎0.06‎ ‎0.12‎ ‎0.01‎ ‎∴E(X)=5×0.09+6.5×0.36+8×0.36+8.5×0.06+10×0.12+12×0.01=7.5‎ ‎19.解法一:(I)在平面OAB内作ON⊥OA交AB于点N,连接NC. ‎ 又OC⊥OA,OA∩ON=O,‎ ‎∴OA⊥平面ONC.‎ ‎∵NC平面ONC,∴OA⊥NC.‎ 取Q为AN的中点,连接PQ,则PQ∥NC, ‎ ‎∴PQ⊥OA.‎ 在等腰△AOB中,∠AOB=120O,∴∠OAB=∠OBA=30O. ‎ 在Rt△AON中,∠OAN=30O,∴ON=AN=AQ.‎ 在△ONB中,∠NOB=120O-90O=30O=∠NBO.‎ ‎∴NB=ON=AQ,∴‎ ‎(II)连接PN、PO,由已知得OC⊥平面OAB,又ON平面OAB,‎ ‎∴OC⊥ON,又ON⊥OA,OA∩OC=O,‎ ‎∴ON⊥平面AOC,∴OP是NP在平面AOC内的射影.‎ 在等腰Rt△AOC中,P为AC的中点,‎ ‎∴AC⊥OP,则可知AC⊥NP.‎ ‎∴∠OPN为二面角O-AC-B的平面角.‎ 在等腰Rt△AOC中,OC=OA=1,∴OP=.‎ 在Rt△AON中,ON=OAtan30o=.‎ 在Rt△PON中,PN=‎ ‎∴cos∠OPN= ‎ 即二面角O-AC-B的平面角的余弦值为 解法二:‎ ‎(I)过O在平面OAB内作OD⊥OA,交AB于点D,以O点为原点,‎ 分别以OA、OD、OC为x轴、y轴、z轴,建立空间直角坐标系,如图所示.‎ 则A(1,0,0),C(0,0,1),B(,,0),∴P(,0,). ‎ 设,则Q(,,0),‎ ‎∴,.‎ 由OA⊥PQ得,∴,∴‎ 故存在Q(,,0),使得OA⊥PQ.‎ 此时,AB=,AQ=,∴ ‎ ‎ (II)易求平面OAC的一个法向量为,‎ 而,,‎ 设平面ABC的一个法向量为,‎ 则,∴,‎ 解得.‎ ‎∴ ‎ 即二面角O-AC-B的平面角的余弦值为 ‎20.解:(I)点到直线的距离是到点的距离的倍,‎ 则, ‎ 化简得 ‎ (II)设,,,则由,‎ 得,‎ ‎∵点T、P、Q在椭圆上,‎ ‎∴所以,,‎ 故 ‎ ‎ 设分别为直线OP、OQ的斜率,由题意知,‎ ‎,因此,‎ ‎∴. ‎ 所以N点是椭圆上的点,‎ 而恰为该椭圆的左、右焦点,由椭圆的定义, ‎ ‎21.解:(I) , ‎ ‎∴在上是增函数.‎ ‎(II)‎ ‎ ‎ 显然,故若使,只需 即可.‎ 令,则 ‎ (i)当即时,恒成立, ‎ ‎∴在内为增函数 ‎∴,即在上恒成立.‎ ‎(ii)当时,则令,即,可化为,‎ 解得,‎ ‎∴两根(舍),‎ 从而.‎ 当时,则,‎ ‎∴,∴在为减函数.‎ 又,∴‎ ‎∴当时,不恒成立,即不恒成立.‎ 综上所述,a的取值范围为 ‎ ‎22.解:(I)证明:依题意,,,,‎ 则.‎ ‎ (II) 解:当时,‎ 点的极坐标为,‎ 点的极坐标为,‎ 化为直角坐标,即,,‎ 则直线的方程为,‎ 所以,.‎ ‎23.解:(I)由于,‎ 所以.‎ ‎(II) 由已知,有,‎ 因为(当取等号),‎ ‎(当取等号),‎ 所以,即 故