- 358.25 KB
- 2021-08-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
热点专攻16 化学反应原理综合题
1.(2019天津理综)多晶硅是制作光伏电池的关键材料。以下是由粗硅制备多晶硅的简易过程。
回答下列问题:
Ⅰ.硅粉与HCl在300 ℃时反应生成1 mol SiHCl3气体和H2,放出225 kJ热量,该反应的热化学方程式为 。SiHCl3的电子式为 。
Ⅱ.将SiCl4氢化为SiHCl3有三种方法,对应的反应依次为:
①SiCl4(g)+H2(g)SiHCl3(g)+HCl(g) ΔH1>0
②3SiCl4(g)+2H2(g)+Si(s)4SiHCl3(g) ΔH2<0
③2SiCl4(g)+H2(g)+Si(s)+HCl(g)3SiHCl3(g) ΔH3
(1)氢化过程中所需的高纯度H2可用惰性电极电解KOH溶液制备,写出产生H2的电极名称 (填“阳极”或“阴极”),该电极反应方程式为 。
(2)已知体系自由能变ΔG=ΔH-TΔS,ΔG<0时反应自发进行。三个氢化反应的ΔG与温度的关系如图1所示,可知:反应①能自发进行的最低温度是 ;相同温度下,反应②比反应①的ΔG小,主要原因是 。
(3)不同温度下反应②中SiCl4转化率如图2所示。下列叙述正确的是 (填序号)。
A.B点:v(正)>v(逆)
B.v(正):A点>E点
C.反应适宜温度: 480~520 ℃
8
(4)反应③的ΔH3= (用ΔH1、ΔH2表示)。温度升高,反应③的平衡常数K (填“增大”“减小”或“不变”)。
(5)由粗硅制备多晶硅过程中循环使用的物质除SiCl4、SiHCl3和Si外,还有 (填分子式)。
答案:Ⅰ.Si(s)+3HCl(g)SiHCl3(g)+H2(g) ΔH=-225 kJ·mol-1 ··Cl····Cl······
Ⅱ.(1)阴极 2H2O+2e-H2↑+2OH-
(2)1 000 ℃ ΔH2<ΔH1导致反应②的ΔG小
(3)AC (4)ΔH2-ΔH1 减小 (5)HCl、H2
解析:Ⅰ.首先书写反应的化学方程式:Si+3HClSiHCl3+H2,然后加上状态和焓变得热化学方程式:Si(s)+3HCl(g)SiHCl3(g)+H2(g) ΔH=-225kJ·mol-1;SiHCl3的电子式为··Cl····Cl······。
Ⅱ.(1)用惰性电极电解KOH溶液,阴极是“放氢生碱”,电极反应为2H2O+2e-H2↑+2OH-。
(2)要使反应①能自发进行,则体系自由能变ΔG<0,由图1可知反应①能自发进行的最低温度为1000℃;反应②放热,ΔH2<ΔH1导致反应②的ΔG比反应①小。
(3)AD是反应②达平衡的过程,D点是平衡点;DE是平衡移动的过程。B点未达平衡v(正)>v(逆),A项正确;E点温度高于A点,则v(正):A点”“<”或“=”)0。
②曲线X对应的投料比为 ,判断理由是 。
③已知R点的投料比与P相同,则R、P两点对应的正反应速率:v(R) (填“>”“<”或“=”)v(P)。
④P点时,反应的化学平衡常数K为 (已知:0.56≈1.6×10-2)。
(3)在一定温度下,在1 L恒容密闭容器中充入一定量C2H4(g)和H2O(g),发生如下反应:C2H4(g)+H2O(g)CH3CH2OH(g) ΔH,测得C2H4(g)的转化率(α)与时间(t)的关系如图2所示。
图2
其中T1、T2表示温度,速率方程:v正=k正·c(C2H4)·c(H2O),v逆=k逆·c(CH3CH2OH)(k是速率常数,只与温度有关)。
①N点:k正k逆 (填“>”“<”或“=”)c(CH3CH2OH)c(C2H4)·c(H2O),升高温度,k正增大的倍数 (填“>”“<”或“=”)k逆增大的倍数。
②温度为T1时,测定平衡体系中c(H2O)=0.25 mol·L-1,则k正k逆= L·mol-1(结果保留2位小数)。
答案:(1)CH3CH2OH(l)C2H4(g)+H2O(l)ΔH=+103.7 kJ·mol-1
(2)①< ②3∶1 当CO2的量相同时,H2的量越大CO2的转化率越高(合理即可) ③> ④62.5
(3)①> < ②16.00
8
命题分析本题考查盖斯定律与热化学方程式的书写、化学平衡移动原理与图像分析、化学平衡相关计算,注意化学平衡移动原理与图像联合分析,找出相关点、线的数据和变化原因。
解析:(1)①CH3CH2OH(l)CH3CH2OH(g)ΔH1=+41.50kJ·mol-1
②H2O(g)H2O(l) ΔH2=-44kJ·mol-1
③CH3CH2OH(g)C2H4(g)+H2O(g) ΔH3
反应③的ΔH=E(反应物)-E(生成物)=5E(C—H)+E(C—C)+E(C—O)+E(O—H)-[4E(C—H)+E(CC)+2E(O—H)]=[5×415+332+433+462.8]kJ·mol-1-[4×415+611+2×462.8]kJ·mol-1=+106.2kJ·mol-1,根据盖斯定律:①+②+③,CH3CH2OH(l)C2H4(g)+H2O(l)
ΔH=+41.50kJ·mol-1-44kJ·mol-1+106.2kJ·mol-1=+103.7kJ·mol-1,故实验室制备乙烯的热化学方程式为CH3CH2OH(l)C2H4(g)+H2O(l) ΔH=+103.7kJ·mol-1。
(2)①温度升高CO2的平衡转化率降低,说明升温平衡逆向移动,逆反应为吸热反应,正反应为放热反应,ΔH<0。
②两个相同容器的恒容密闭容器中,当CO2的物质的量相同时,H2的物质的量越大,CO2的转化率越高,曲线X对应的投料比为3∶1。
③从R点到P点在图中的相对位置可知,R点还没有达到平衡状态,反应正向进行,所以R、P两点对应的正反应速率为v(R)>v(P)。
④曲线Y对应的投料比n(H2)n(CO2)=21。设起始时投入的CO2的物质的量为1mol。P点时,CO2的转化率为0.50。
2CO2(g)+6H2(g)C2H4(g)+4H2O(g)
起始/mol 12 0 0
转化/mol 0.51.5 0.25 1
平衡/mol 0.50.5 0.25 1
K=c(C2H4)·c4(H2O)c2(CO2)·c6(H2)=62.5。
(3)①反应达到平衡时,v正=v逆,可得平衡常数K=k正k逆,N点正反应速率大于逆反应速率,则KT1,且平衡时T2温度下,C2H4的转化率小于T1的转化率,故正反应为放热反应,升温平衡逆向移动,说明k逆增大倍数大于k正增大倍数。
②温度为T1时,C2H4(g)的平衡转化率为80%,设C2H4的起始浓度为cmol·L-1,平衡时c(C2H4)=0.2cmol·L-1,c(CH3CH2OH)=0.80cmol·L-1,已知c(H2O)=0.25mol·L-1,则k正k逆=0.80c0.2c×0.25L·mol-1=16.00L·mol-1。
3.(2019全国Ⅱ)环戊二烯()是重要的有机化工原料,广泛用于农药、橡胶、塑料等生产。回答下列问题:
(1)已知:(g)(g)+H2(g)ΔH1=100.3 kJ·mol-1①
8
H2(g)+I2(g)2HI(g) ΔH2=-11.0 kJ·mol-1②
对于反应:(g)+I2(g)(g)+2HI(g)ΔH3= kJ·mol-1。③
(2)某温度下,等物质的量的碘和环戊烯()在刚性容器内发生反应③,起始总压为105 Pa,平衡时总压增加了20%,环戊烯的转化率为 ,该反应的平衡常数Kp= Pa。达到平衡后,欲增加环戊烯的平衡转化率,可采取的措施有 (填标号)。
A.通入惰性气体
B.提高温度
C.增加环戊烯浓度
D.增加碘浓度
(3)环戊二烯容易发生聚合生成二聚体,该反应为可逆反应。不同温度下,溶液中环戊二烯浓度与反应时间的关系如图所示,下列说法正确的是 (填标号)。
A.T1>T2
B.A点的反应速率小于C点的反应速率
C.A点的正反应速率大于B点的逆反应速率
D.B点时二聚体的浓度为0.45 mol·L-1
(4)环戊二烯可用于制备二茂铁[Fe(C5H5)2],结构简式为,后者广泛应用于航天、化工等领域中。二茂铁的电化学制备原理如下图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯的DMF溶液(DMF为惰性有机溶剂)。
该电解池的阳极为 ,总反应为 。电解制备需要在无水条件下进行,原因为 。
8
答案:(1)89.3 (2)40% 3.56×104 BD (3)CD
(4)Fe电极 Fe+2+H2↑[或Fe+2C5H6Fe(C5H5)2+H2↑] 水会阻碍中间物Na的生成;水会电离生成OH-,进一步与Fe2+反应生成Fe(OH)2
解析:(1)根据盖斯定律,将反应①和②叠加可得反应③,故ΔH3=ΔH1+ΔH2=100.3kJ·mol-1+(-11.0kJ·mol-1)=89.3kJ·mol-1。
(2)温度、体积一定,压强与物质的量成正比,则起始状态碘和环戊烯的分压分别为5×104Pa,设环戊烯的转化率为x,根据反应:
(g)+I2(g)(g)+2HI(g)
起始/Pa 5×104 5×104 0 0
转化/Pa 5×104x 5×104x 5×104x 1×105x
平衡/Pa 5×104(1-x) 5×104(1-x) 5×104x 1×105x
根据平衡时总压增加了20%,则5×104(1-x)Pa+5×104(1-x)Pa+5×104xPa+1×105xPa=1.2×105Pa,解得x=0.4,即环戊烯的转化率为40%。平衡时各物质的分压为p(环戊烯)=3×104Pa,p(I2)=3×104Pa,p(环戊二烯)=2×104Pa,p(HI)=4×104Pa,则该反应的平衡常数Kp=(4×104Pa)2×2×104Pa(3×104Pa)2=3.56×104Pa。
通入惰性气体,不会引起各物质的浓度的变化,反应速率不变,平衡不移动,环戊烯的平衡转化率不变,A项不符合题意;由于该反应为吸热反应,故升高温度使平衡向右移动,环戊烯的平衡转化率增大,B项符合题意;增加一种物质的量,自身的转化率减少,而另一种反应物的转化率增大,增加环戊烯浓度,环戊烯的平衡转化率减小,增加碘浓度,环戊烯的平衡转化率增大,C项不符合题意,D项符合题意。
(3)根据曲线的变化趋势可知,T2温度下首先达到平衡,反应速率大,因此T2大于T1,A项错误;A点、C点对应的反应物的浓度、温度都不同,无法比较A、C两点的反应速率的大小,B项错误;A点的正反应速率大于B点的正反应速率,而B点还没有达到平衡,因此B点的正反应速率大于其逆反应速率,则A点的正反应速率大于B点的逆反应速率,C项正确;根据曲线可知,环戊二烯的初始浓度为1.5mol·L-1,B点环戊二烯的浓度为0.6mol·L-1,环戊二烯的浓度变化量为0.9mol·L-1,因此B点二聚体的浓度为0.45mol·L-1,D项正确。
(4)根据Fe的化合价升高为+2价可知,Fe发生氧化反应,故Fe作阳极;根据二茂铁的分子式可知,两个环戊二烯去掉2个H原子,再结合所给信息,可得总反应方程式为Fe+2+H2↑[Fe+2C5H6Fe(C5H5)2+H2↑]。有水存在的条件下,Na+不能得到电子生成Na,而是H2O得电子生成H2和OH-,OH-会与Fe2+反应生成Fe(OH)2。
4.(2019全国Ⅲ)近年来,随着聚酯工业的快速发展,氯气的需求量和氯化氢的产出量也随之迅速增长。因此,将氯化氢转化为氯气的技术成为科学研究的热点。回答下列问题:
8
(1)Deacon发明的直接氧化法为:4HCl(g)+O2(g)2Cl2(g)+2H2O(g)。下图为刚性容器中,进料浓度比c(HCl)∶c(O2)分别等于1∶1、4∶1、7∶1时HCl平衡转化率随温度变化的关系:
可知反应平衡常数K(300 ℃) (填“大于”或“小于”)K(400 ℃)。设HCl初始浓度为c0,根据进料浓度比c(HCl)∶c(O2)=1∶1的数据计算K(400 ℃)= (列出计算式)。按化学计量比进料可以保持反应物高转化率,同时降低产物分离的能耗。进料浓度比c(HCl)∶c(O2)过低、过高的不利影响分别是 。
(2)Deacon直接氧化法可按下列催化过程进行:
CuCl2(s)CuCl(s)+12Cl2(g) ΔH1=83 kJ·mol-1
CuCl(s)+12O2(g)CuO(s)+12Cl2(g)ΔH2=-20 kJ·mol-1
CuO(s)+2HCl(g)CuCl2(s)+H2O(g)ΔH3=-121 kJ·mol-1
则4HCl(g)+O2(g)2Cl2(g)+2H2O(g)的ΔH= kJ·mol-1。
(3)在一定温度的条件下,进一步提高HCl的转化率的方法是 。(写出2种)
(4)在传统的电解氯化氢回收氯气技术的基础上,科学家最近采用碳基电极材料设计了一种新的工艺方案,主要包括电化学过程和化学过程,如下图所示:
负极区发生的反应有 。电路中转移1 mol电子,需消耗氧气 L(标准状况)。
答案:(1)大于 0.422×0.422(1-0.84)4×(1-0.21)c0 O2和Cl2分离能耗较高、HCl转化率较低
(2)-116
(3)增大反应体系压强、及时除去产物
(4)Fe3++e-Fe2+,4Fe2++O2+4H+4Fe3++2H2O 5.6
解析:本题化学原理综合题,为热化学、电化学与化学平衡综合题,难度中等。
8
(1)分析任意一条平衡曲线可知,在进料浓度比固定的条件下,随着温度的升高,HCl的平衡转化率降低,说明正反应为放热反应,由于K只与温度有关,升高温度,平衡逆向移动,平衡常数K减小,即K(300℃)大于K(400℃)。
根据进料浓度比及HCl的平衡转化率间的关系可知,c(HCl)∶c(O2)=1∶1的曲线为最上面的那条曲线,由该曲线可知:温度为400℃时HCl的平衡转化率为84%。
根据条件可列三段式如下:
4HCl(g)+O2(g)2Cl2(g)+2H2O(g)
初始: c0 c0 0 0
转化: c0×0.84 c0×0.21 c0×0.42 c0×0.42
平衡: c0×(1-0.84)c0×(1-0.21)c0×0.42 c0×0.42
K(400℃)=c2(Cl2)·c2(H2O)c4(HCl)·c(O2)=(c0×0.42)2·(c0×0.42)2[c0×(1-0.84)]4·[c0×(1-0.21)]=0.422×0.422(1-0.84)4×(1-0.21)c0
进料浓度比c(HCl)∶c(O2)过低,导致产品Cl2混有大量O2,则分离两气体时导致能耗较高。而进料浓度比c(HCl)∶c(O2)过高,则导致HCl的转化率过低,浪费原料。
(2)由盖斯定律可知,将题给催化过程的三个反应直接相加可得:2HCl(g)+12O2(g)Cl2(g)+H2O(g)
ΔH'=(83-20-121)kJ·mol-1=-58kJ·mol-1,则ΔH=2ΔH'=-116kJ·mol-1
(3)在温度一定时,要增大HCl的平衡转化率,可采取的措施有:及时移走部分产物、增大体系压强等。
(4)根据图示可知,负极区(指电解池的阴极区)发生的电极反应(还原反应)为Fe3++e-Fe2+,随之发生的化学过程为4Fe2++O2+4H+4Fe3++2H2O。根据电子守恒可知,电路中每转移1mol电子消耗0.25molO2,在标准状况下的体积为5.6L。
8