• 39.00 KB
  • 2021-10-21 发布

丰富的图形世界(2)教案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ 一、 课题:丰富的图形世界(2)‎ 二、 教学目标 目的与要求 认识几何体,会对柱体、锥体与球体等图形进行或判断.‎ 知识与技能 通过观察能将立体图形识别与分类 情感、态度与价值观 学会观察,从生活周围熟悉的物体入手,对物体形状的认识逐步由感性认识上升到抽象的数学图形.‎ 三、教学重难点 ‎ 立体图形的分类和识别 四、教学过程 ‎1、情境引入 ‎  教师请木工师傅用木头做了几个高度、宽度差不多的几何体,分别是长方体,圆柱,圆锥和球.现在蒙上你的眼睛,老师从这四个几何体中任选一个放进事先准备好的纸盒内(纸盒的深度超过几何体的高度),盖严.你能不能只用摇动纸盒的方法就可以“听”出盒内放的是什么形状的几何体吗?说说你的理由.‎ ‎2、知识引导 ‎①‎ ‎②‎ ‎③‎ ‎④‎ ‎⑤‎ ‎⑥‎ ‎⑦‎ ‎⑧‎ 例1、(1)请找出与图②具有相同特征的 ‎(2)找出具有相同特征的图形,并说明相同特征.‎ 解答(1)⑧与②都是棱锥;①、④和②都由六个面转围成;⑦⑧②都是锥体;①④⑤⑧②都是平面围成的几何体.‎ ‎(2)1.按柱体、锥体、球体分:①③④⑤是柱体;②⑦⑧为锥体;⑥是球体.‎ ‎2、按几何体表面有无曲面分:①②④⑤⑧都是平面围成的几何体;③⑥⑦都是带曲面的几何体;‎ ‎3、按有没顶点分:①②④⑤⑦⑧都是有顶点的几何体;③⑥是无顶点的几何体.‎ 例2、判断题:‎ ‎(1)柱体的的上下两个面形状一样(   )‎ ‎(2)圆柱、圆锥的底面都是圆(   )‎ ‎(3)棱柱的侧面可能是三角形(   )‎ ‎(4)棱锥和圆锥的形状有相同之处(   )‎ ‎(5)表面有曲面的几何体都可以流动滚动(   )‎ 3‎ ‎ ‎ ‎(6)棱柱的棱长都相等(   )‎ 解答:1、×(柱体的两个底面是一样的,它的两个底面形状相同,大小也一定相同)2、√  3、×(棱柱的侧面只可能是长方形(直棱柱)或平行四边形(斜棱柱))‎ ‎4、√(都有一个锥顶点)  5、√  6、×(侧棱都相等)‎ 例3、如图(1)(2)(3)(4)为四个平面图形 图 顶点数 边数 区域数 ‎(1)‎ ‎4‎ ‎6‎ ‎3‎ ‎(2)‎ ‎(3)‎ ‎(4)‎ ‎(1)数一数每一个图形各有多少个顶点?多少条边?这些边围出了多少个区域?请将你的结果填入下表中:‎ ‎(1)         (2)        (3)         (4)‎ ‎(2)观察上表,推断出一个平面图形的顶点数、边数、区域数之间有什么关系?‎ ‎(3)现已知某一个平面图形有999个顶点,且围成了999个区域,试根据(2)中推断出的关系,确定这个图形有多少条边?‎ 解答:(1)8、12、5、6、7、2、10、15、6‎ ‎(2)顶点数+区域数-边数=1‎ ‎(3)1997‎ 猜想:如果将上述图形改成多面体:如正方体,三棱柱,五面体,七面体,如图,则它们的顶点数、棱数、面数也存在这样的关系吗?‎ ‎(分组讨论,形成结论:欧拉公式:顶点数+面数-棱数=2)‎ 3‎ ‎ ‎ 思考题:1、有这样一个几何体,它的各个面的形状都是相同的,任何两条棱之间都没有互相平行的,并且它的面数和顶点数相等,这是什么几何体?它的每个面是什么图形?共有多少条棱?‎ 解答:三棱锥,每一个面都是等边三角形,共有六条 棱 ‎2、棱柱、棱锥的面相交成棱,最少的棱有几条?有没有7条棱的棱柱或棱锥?说出你的理由.‎ 解答:我们知道当棱柱与棱锥的底面边数相同时,总有棱锥的边数少于棱柱的边数.而棱数最少的棱锥是三棱锥,有六条棱.但四棱锥的棱数为8条,因此不可能有7条棱.(其它棱柱、棱锥的顶点不少于5个,每个顶点至少是3条棱,因此棱数不少于5×3÷2>7)‎ 五、课堂小结 ‎  同学们,这节课我们学会了什么?‎ 六、课堂练习 ‎  P121 1、2‎ 七、课堂作业 ‎  P122 3、4‎ 八、教学反思 ‎ 3‎

相关文档