• 330.91 KB
  • 2021-10-26 发布

《课堂设计》人教版八年级数学(上册)第十四章 14

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎《课堂设计》人教八年级数学(上册)‎ 第十四章 整式的乘法与因式分解 ‎14.2乘法公式(第3课时)‎ ‎1.复述平方差公式、完全平方公式及其它们的特点.‎ ‎2.计算:‎ ①(2y-3)2=________________.‎ ②=_____________________.‎ ③=_________________.‎ ④=_____________.‎ ⑤(-2b-a)(a-2b)=______________.‎ ‎3. 去括号,并回忆去括号法则是什么?‎ ‎(1)a+(b+c)=____________.‎ ‎(2)a-(b-c)=____________.‎ 阅读课本,完成下列问题:‎ ‎1.添括号法则:‎ 添括号时,如果括号前面是正号,括到括号里的各项都_______________;如果括号前面是负号,括到括号里的各项都_____________.‎ ‎2. (1)在等号右边的括号内填上适当的项:‎ ‎ ①a+b-c=a+( )‎ ‎ ②a-b+c=a-( )‎ ‎ ③a-b-c=a-( )‎ ④a+b+c=a-( )‎ ‎(2)判断下列运算是否正确.‎ ①2a-b-=2a-(b-)‎ ②m-3n+2a-b=m+(3n+2a-b)‎ ③2x-3y+2=-(2x+3y-2)‎ ④a-2b-4c+5=(a-2b)-(4c+5)‎ ‎3.阅读例题5,并思考:‎ 在(1)(x+2y-3)(x-2y+3)中的两个因式里,各有_______项,对应的项有什么关系?为什么要把(2x-3)看作一个整体?‎ 在(2)(a+b+c)2中,为什么要把(a+b)看作一个整体?你还有其它的方法吗?‎ ‎4.归纳例题5的解题思路.‎ ‎1.下列各式中,互为相反数的是______.‎ ①3a+2b,3a-2b;‎ ②a-2b+c,2b-a-c;‎ ③-2a+4,4-2a;‎ ④-(a-b),-b+a ‎2.运用乘法公式计算:‎ ①(a-2b+c)(a-2b-c)‎ ②(a-b-c)2,‎ ‎1.选择题:‎ ①(-a-2b) 2的运算结果是( )‎ A.a2-4ab+4b2 B.-a2+4ab-4b2 C.-a2-4ab-4b2 D.a2+4ab+4b2‎ ②代数式2xy-x2-y2=( )‎ A.(x-y)2 B.(-x-y)2 C.(y-x)2 D.-(x-y)2‎ ③()2-()2等于 ( )‎ A.xy B.2xy C. D.0‎ ④化简-(x-y)(x-y)2(y-x)的结果是( )‎ A.(x-y)4 B.-(y-x)4 C.-(x-y)4 D.-(x+y)4‎ ⑤形如和的式子称为完全平方式,若a2+ax+81‎ 是一个完全平方式,则等于( )‎ A.9 B.18 C. D.‎ ‎2.运用乘法公式计算:‎ ‎(1);‎ ‎(2);‎ ‎(3)(a-2b+c)(a+2b+c);‎ (4) ‎;‎ ‎(5)(a+b+c+d)2 . ‎ 参考答案 课堂检测 ‎1.②④‎ ‎2.a2-4ab+4b2-c2 a2-2ab+b2-2ac+2bc+c2 ‎ 课后提高 ‎1.D D A A D ‎2.(1)a2-2ab+b2+4ac-4bc+4c2;‎ ‎(2)a2-4b2+4bc-c2;‎ ‎(3)a2+2ac+c2-4b2;‎ ‎(4)4ab+4ac;‎ ‎(5)a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd;‎

相关文档