• 564.00 KB
  • 2021-10-26 发布

湖南省长沙市明达中学2021届九年级上学期第一次月考数学试题

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
长沙市明达中学2021届九年级第一次月考 数学试卷 时间:120分钟 满分:120分 ‎ 一、选择(每题3分,共36分)‎ ‎1、下列图形中,既是轴对称图形,又是中心对称图形的是( )‎ A. ‎ B. C. D. ‎ ‎2、若点A(3,2)与点B(﹣3,m)关于原点对称,则m的值是(  )‎ A.3 B.﹣‎3 ‎C.2 D.﹣2‎ ‎3、已知⊙O的半径为‎5cm,若点A到圆心O的距离为‎3cm,则点A(  )‎ A.在⊙O内 B.在⊙O上 ‎ C.在⊙O外 D.与⊙O的位置关系无法确定 ‎4、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠AOB=30°,则∠BOC的度数是(  )‎ A.30° B.35° C.45° D.60°‎ 第4题图 第5题图 第7题图 ‎5、如图,PA、PB分别切⊙O于点A、B,OP交⊙O于点C,下列结论中,错误的是(  )‎ A.∠1=∠2 B.PA=PB C.AB⊥OP D.OP=2OA ‎6、在Rt△ABC中,∠C=90°,AB=6,△ABC的内切圆半径为1,则△ABC的周长(  )‎ A.13 B.‎14 ‎C.15 D.16‎ ‎7、如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CD为‎8m,水面宽AB为‎8m,则桥拱半径OC为(  )‎ A.‎4m B.‎5m C.‎6m D.‎‎8m ‎8、若钟表分针走30分钟,则钟表的时针转 ( )‎ ‎ A. B. C. D.‎ ‎9、如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是( ).‎ A.CE=DE B.弧BC =弧 BD C.∠BAC=∠BAD D.AC>AD 第9题图 第11题图 第12题图 ‎10、一个图形无论经过平移还是旋转,有以下说法正确的是 ( )‎ ‎①对应线段平行 ②对应线段相等 ③对应角相等 ④图形的形状和大小都没有变化 A、 ‎①②③ B、①②④ C、①③④ D、②③④‎ ‎11、如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4∶3∶5,则∠D的度数是( )‎ A. B. C. D.‎ ‎12、如图,把Rt△OAB置于平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(3,0),点P是Rt△OAB内切圆的圆心.将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,依此规律,第2019次滚动后,Rt△OAB内切圆的圆心P2019的坐标是( )‎ A. B. C. D. ‎ 二、填空(每题3分,共18分)‎ ‎13.如图,∠D=48°,则∠AOC的度数是______.‎ ‎14.两直角边分别为3、4的直角三角形的内切圆半径是 。‎ ‎15.两边长分别为‎6cm、‎8cm的直角三角形的外接圆半径是    cm ‎17图 ‎16.如图,AB为⊙O的直径,CD为⊙O的弦,,的度数为______. ‎ 第13题图 第16题图 ‎17、如图17:AB,BC,CD分别与⊙O相切于E,F,G,BE=4,CG=6,则BC= ‎ ‎18、以下命题中,正确的有 。‎ ‎(1)过三点一定有一个圆 (2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角 ‎(4)平分弦的直径垂直弦,并且平分弦所对的两段弧 (5)相等的弦所对的圆周角相等 ‎(6)三角形的外心是三内角角平分线交点 (7)三角形的内心是三内角角平分线交点 ‎ ‎(8)圆心到直线上一点的距离等于半径,则直线是圆的切线 三、解答题(共66分,其中19---22题8分,23题各10分,24、25各12分)‎ ‎19、(8分)如图,已知三个顶点坐标分别是,,‎ ‎.请按要求画图: 画出关于原点O中心对称后得到的; 画出绕着原点O顺时针旋转后得到的. 请写与的坐标.‎ ‎20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.‎ ‎(1)求证:DC为⊙O的切线;‎ ‎(2)若∠DAB=60°,⊙O的半径为3,求线段CD的长.‎ ‎21、(8分)OA是⊙O的半径,以OA为直径的⊙C与⊙O的弦AE相交于点D,‎ ‎(1)求证:点D是AE的中点,‎ ‎(2) 若DO = 5 ,且求的面积 ‎22.(8分)如图,等边△ABC内接于⊙O,P是弧AB上任一点(点P不与点A、B重合),连接AP、BP,过点C作CM∥BP交PA的延长线于点M.‎ ‎(1)求∠APC的度数.‎ ‎(2)求证:△PCM为等边三角形.‎ 23、 ‎(10分)如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的○O与BC相切于点D,与AC、AB分别相交于点E、F,连接AD与EF相交于点G。‎ (1) 求证:AD平分∠CAB;‎ (2) 若OH⊥AD于点H,FH平分∠AFE,‎ 试判断DF与DH的数量关系,并说明理由。‎ 24、 ‎(12分)如图,在中,CA是边BE上的中线,,CE交BA的延长线于点E,BE = 10 ,BC = 8.‎ (1) 求证:为等腰三角形 (2) 求CE的长 ‎ (3) 求的外接圆圆心P与内切圆圆心Q之间的距离 ‎25.(12分)如图,已知直线:和抛物线:,抛物线的顶点为原点,且经过点,直线与轴交于点,与抛物线L交于点、,且.‎ ‎(1)求抛物线的解析式;‎ ‎(2)点P是抛物线上的一个动点,‎ ‎①以点P为圆心,PF为半径作⊙P,试判断⊙P与直线的位置关系,并说明理由;‎ ‎②若点,当的值最小时,求点的坐标;‎ ‎(3)求证:无论为何值,直线总是与以为直径的圆相切.‎ ‎ ‎ 明达中学初三第一次月考 数学答案 一.选择题(本大题共12小题,每小题3分,共36分)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答案 B D A B D B B B D D D D 二.填空题(本大题共6小题,每小题3分,18分)‎ ‎13. 14. 15. 5 16. 65° 17. 10 18. ②③⑦‎ 三、解答题(本大题共7小题,共66分)‎ 19、 解:(1)图略 (2) 图略 (3) ‎20.(1)证明:连接CO,‎ ‎∵AO=CO,‎ ‎∴∠OAC=∠OCA,‎ ‎∵AC平分∠DAB,‎ ‎∴∠OAC=∠DAC,‎ ‎∴∠DAC=∠OCA,‎ ‎∴CO∥AD,‎ ‎∴CO⊥CD,‎ ‎∴DC为⊙O的切线;…………4分 ‎(2)连接BC,‎ ‎∵AB为⊙O的直径,‎ ‎∴∠ACB=90°,‎ ‎∵∠DAB=60°,AC平分∠DAB,‎ ‎∴∠BAC=∠DAB=30°,‎ ‎∵⊙O的半径为3,‎ ‎∴AB=6,‎ ‎∴AC=AB=3.…………6分 ‎∵∠CAD=30°‎ ‎∴……………8分(注意:方法不唯一,也可过点O作OE垂直AD于点E,四边形OCDE为矩形,OE=CD,求出OE即可)‎ ‎21、(1)联结OD,‎ ‎ 是⊙C的直径 ‎ ‎ ‎ 又在⊙O中,OD过圆心 ‎ ‎ ‎ 即:D是AE的中点 ‎ (2)‎ ‎ ‎ ‎22.解:(1)∵△ABC是等边三角形,‎ ‎∴∠ABC=60°,‎ ‎∴∠APC=∠ABC=60°;……………………4分 ‎(2)∵∠BPC=∠BAC=60°,‎ 又CM∥BP,‎ ‎∴∠PCM=∠BPC=60°,‎ 又由(1)得∠APC=60°,‎ ‎∴△PCM为等边三角形;……………………8分 ‎23、(1)证明:连接OD. ∵⊙O与BC相切于点D, ∴OD⊥BC, ∵∠C=90°, ∴OD∥AC, ∴∠CAD=∠ODA, ∵OA=OD, ∴∠OAD=∠ODA, ∴∠CAD=∠BAD, ∴AD平分∠CAB.‎ ‎(2)DF=DH 理由如下:∵FH平分∠AFE, ∴∠AFH=∠EFH, ∵∠DFG=∠EAD=∠HAF, ∴∠DFG=∠EAD=∠HAF, ∴∠DFG+∠GFH=∠HAF+∠HFA, 即∠DFH=∠DHF, ∴DF=DH,‎ ‎24、(1)‎ ‎ ‎ ‎(3)‎ 即外心P和内心Q的距离是 25. ‎(1)解:∵的顶点为原点,‎ ‎∴,‎ ‎∴抛物线解析式为,……………………1分 把点代入得到,……………………2分 ‎∵,∴,‎ ‎∴抛物线解析式为.………………3分 (2) ‎①⊙P与直线相切. 理由如下:‎ 设为抛物线L上任意一点,作PM⊥直线于M,‎ ‎ 由可得 ‎∴,‎ ‎∴(半径)‎ ‎∴ ⊙P与直线相切 ‎② 由①知,抛物线L上任意一点到点F的距离与到直线l 的距离相等 ‎∴当PQ⊥直线l时,的值最小,此时 ‎ ‎(3)证明:由,得.‎ ‎∴,,‎ ‎∴ ‎ 设BC中点为,过点作于点D,‎ 则点坐标为,‎ ‎∴‎ ‎∴无论为何值,直线总是与以BC为直径的圆相切; ‎