- 262.00 KB
- 2021-10-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
《二次根式》复习
一、学习目标
1、了解二次根式的定义,掌握二次根式有意义的条件和性质。
2、熟练进行二次根式的乘除法运算。
3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。
4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。
二、学习重点、难点
重点:二次根式的计算和化简。
难点:二次根式的混合运算,正确依据相关性质化简二次根式。
三、复习过程
(一)自主复习
1.若a>0,a的平方根可表示为___________
a的算术平方根可表示________
2.当a______时,有意义,
当a______时,没有意义。
3.
4.
5.
(二)合作交流,展示反馈
1、式子成立的条件是什么?
2、计算: (1) (2)
3.(1) (2)
(三)精讲点拨
在二次根式的计算、化简及求值等问题中,常运用以下几个式子:
(1)
(2)[来源:Zxxk.Com]
(3)
(4)
(5)
(四)达标测试:
A组
1、选择题:
(1)化简的结果是( )
A 5 B -5 C 士5 D 25
(2)代数式中,x的取值范围是( )
A B C D [来源:学+科+网]
(3)下列各运算,正确的是( )
A、 B、
C、 D、
(4)如果是二次根式,化为最简二次根式是( )
A、 B、 C、 D、以上都不对
(5)化简的结果是( )
2、计算.
(1) (2)
(3) (4)
3、已知求的值
[来源:学.科.网Z.X.X.K]
[来源:学§科§网Z§X§X§K]
B组
1、选择:
(1),则( )
A a,b互为相反数 B a,b互为倒数 C D a=b
(2)在下列各式中,化简正确的是( )
A、 B、C、 D、
(3)把中根号外的移人根号内得( )
2、计算:
(1) (2) [来源:Zxxk.Com]
(3)
3.同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,下面我们观察:
反之,
∴
∴ =-1
仿上例,求:(1);
(2)你会算吗?
(3)若,则m、n与a、b的关系是什么?并说明理由.