- 559.00 KB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
三角形的中位线
教学目标
1.探索并掌握三角形的中位线的概念、性质。
2.会利用三角形中位线的性质解决有关问题。
3.经历探索三角形中位线性质的探索过程,发展学生观察能力及抽象思维能力。
教学重点
探索并掌握三角形中位线的概念、性质
教学难点
三角形中位线的性质的灵活运用
教学过程
二次备课、设计思路
合作交流:
1.动手操作 ①剪一个三角形记为△ABC;
②分别取AB、AC的中点D、E,连接DE;
③沿DE将△ABC剪成两部分,将△ADE绕点E旋转180°,得四边形BCFD,如右图:
④四边形BCFD是平行四边形吗?请说明理由。
⑤还有什么发现?
2.说一说三角形的中线与三角形的中位线的区别。
3.根据图中的条件,回答问题。
(1)如图(a),已知D、E分别为AB和AC的中点,DE=5,求BC的长。
(2)如图(b),D、E、F分别为AB、AC、BC的中点,AC=8,∠C=70°,求DF的长和∠EDF的度数。
(3)如图(c ),若△DEF的周长为10cm,求△ABC的周长; 若△ABC的面积等于20cm,求△DEF的面积。
(a) (b) (c)
4.例1: 如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点。求证:四边形EFGH是菱形
3
讨论:如果一个四边形的对角线互相垂直,那么依次连接它的各边中点能得到吗什么图形?
当堂检测:
1.三角形的各边的的中线分别是6cm、8cm和10cm,求连接各边中点所成三角形的周长。
2. 如图,D、E、F分别是△ABC各边的中点,△DEF与△ABC的周长、面积又怎样的数量关系?证明你的结论。
(3)
3.如图,A、B两地被建筑物阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB,分别取CA、CB的中点D、E.
(1)若DE的长度为36米,求A、B两地之间的距离;
(2)如果D、E两点之间还有阻隔,你有什么方法解决?
课堂小结:通过这节课你学到了什么?你还有什么疑惑?你喜欢这样的课吗?
课堂作业
课外检测:
3
4.顺次连结下列各四边形中点所得的四边形是矩形的是---------------( )
A.等腰梯形 B.矩形 C.平行四边形 D.菱形或对角线互相垂直的四边形
5.已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E、F是BC的中点,试说明BD=2EF。
6.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、
CD分别交于点E、F。试说明∠BEN=∠NFC。(提示:连结AC并取中点)。
3