- 219.58 KB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
九年级上期期末质量检测数学试题卷(2020.1)
时量:120分钟 满分:150分
一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题4分,共40分):
1.抛物线的顶点坐标是( )
A. B. C. D.
2.若,则下列各式一定成立的是 ( )
A. B. C. D.
3.在Rt△ABC中,∠C=90°,如果,那么的值是 ( )
A.90° B.60° C.45° D.30°
4.某排球场6名队员的身高(单位:cm)分别是180,184,188,190,192,194. 现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高 ( )
A. 平均数变小,方差变小 B. 平均数变小,方差变大
C. 平均数变大,方差变小 D. 平均数变大,方差变大
5.方程的解是 ( )
A. B. C. D.
6.在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,
则点C与⊙A的位置关系是 ( )
A. 在⊙A外 B. 在⊙A上 C. 在⊙A内 D. 不能确定
7.已知点都在反比例函数的图像上,那么( )
A. B. C. D. 的大小无法确定
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
8.如图,在△ABC中,点D是AB边上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为 ( )
A.2 B.4 C.6 D.8
9.如图,⊙O的直径垂直于弦CD,垂足为E,∠A=22.5°,OC=4,则弦CD的长为( )
A. B.4 C. D.8
10.如图,若二次函数的图像的对称轴为,与x轴的一个交点为,则:①二次函数的最大值为 ;② ;③ 当时,y随x的增大而增大;④当,其中正确命题的个数是( )
A.1 B.2 C.3 D.4
二、填空题(本题共8小题,每小题4分,共32分):
11.已知关于的方程的一个解为,则m= .
12.如图,已知AB∥CD,AD与BC相交于点O,若则AO=______.
13.如图是某幼儿园的滑梯的简易图,已知滑坡AB的坡度是1︰3 ,滑梯的水平宽是6m,则高BC为_______m.
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
14.如图,A、B、C是⊙O上的点,若∠AOB=100°,则∠ACB= .
15.已知△ABC∽△DEF,且 ,且△ABC与△DEF的周长和为175 ,则△ABC 的周长为 .
16.在元旦的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份礼品,则参加聚会的有 名同学.
17.已知,是方程的两个实根,则 .
18.如图所示,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP交CE于点D, ∠CBP的平分线交CE于点Q。当时,EP+BP= .
三、解答题(本大题共8小题,共78分):
19.(本小题满分6分)计算:
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
20.(本小题满分8分,每小题4分)解下列方程:
(1). (2).
人数
C B A 成绩
50
40
30
20
10
21.(本小题满分8分)某学校从360名九年级学生中抽取了部分学生进行体育测试,并就他们的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:
分组
频数
频率
C
10
0.10
B
0.50
A
40
合计
1.00
(1)补全频数分布表与频数分布直方图;
(2) 如果成绩为A层次的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
22.(本小题满分10分)如图,点E是弧BC的中点,点A在⊙O上,AE交BC于点D。
(1)求证:;
(2)连接OB,OC,若⊙O 的半径为5,BC=8,求△OBC的面积。
23.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,BC=8,,点D在BC上,且BD=AD.
(1)求AC的长; (2)求的值.
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
24.(本小题满分10分)如图,某反比例函数图像的一支经过点和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连接AB,AC。
(1)求该反比例函数的解析式;
(2)若△ABC的面积为6,求直线AB的表达式。
25.(本小题满分13分)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.
(1)求证: △AEB≌△CGB;
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;
(3)连接BH,当点E运动到AD的何位置时有△BEH∽△BAE?
26.(本小题满分13分)已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D。
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
九年级上期期末质量检测数学参考答案(2020.1)
一、选择题(本题共10个小题,每小题4分,满分40分)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
B
C
A
D
B
C
B
C
B
二、填空题(本题共8个小题,每小题4分,满分32分)
11、0; 12、 4 ; 13、2 14、 130°;
15、75; 16、11 ; 17、27 ; 18、12
三、解答题(本大题共8小题,共78分)
19.(本小题满分6分)
解:原式= ………..6分 (每个式子化简各1分,求和3分)
20. (本小题满分8分)
解:(1)原方程可化为: ……………..2分
解得: …………….4分
(2)∵由 ∴ ……………..2分
解得: ……………..4分
(其它解法同样给分)
21.(本小题满分8分)
解:(1)
分组
频数
频率
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
C
10
0.10
B
50
0.50
A
40
0.40
合计
100
1.00
……………..3分(每空1分)
补全直方图略。 ……………..4分(补图1分)
(2)∵A层次的同学人数为40人,频率为0.40
∴估计该校九年级约有 0.4×360=144人达到优秀水平。………… 8分
22.(本小题满分10分)
(1)证明:∵点E是弧BC的中点 ∴∠BAE=∠CBE=∠DBE ……..2分
又∵∠BEA=∠DEB ∴△AEB∽△BED ∴ ……..6分
(2)过点O作OF⊥BC于点F,则BF=CF=4 ……..7分
在中, ……9分
∴ ……10分
23.(本小题满分10分)
解:(1)由∠C=90°,BC=8,得:
….4分
(2)设
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
在Rt△ACD中,
……..8分
则:CD=3,AD=5 于是: ……10分
24.(本小题满分10分)
解:(1)设反比例函数的解析式为,由它的图像经过点得:
于是该该反比例函数的解析式为 ……4分
(2)由BC⊥y轴,垂足为点C可设,则.于是BC=m,点A到BC的距离为(3-n).由点B在反比列函数的图像上且△ABC的面积为6可得:
∴ ……7分
设直线AB的表达式为.将点,代入直线表达式可得:
∴直线AB的表达式为 ……10分
25.(本小题满分13分)
(1)证明: 由已知∠ABE+∠EBC=∠CBG+∠EBC=90°可得:∠ABE=∠CBG ..2分
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
在△AEB和△CGB中:∠BAE=∠BCG=90°,AB=BC , ∠ABE=∠CBG
∴△AEB≌△CGB (ASA) ……..4分
(2)∵四边形ABCD,四边形BEFG均为正方形 ∴∠A=∠D=90°, ∠HEB=90°
∴∠DEH+∠AEB=90°,∠DEH+∠DHE=90° ∴∠DHE=∠AEB …..6分
∴△ABE∽△DEH 于是
故当
……9分
(3)当点E是AD的中点时有 △BEH∽△BAE。 ……10分
理由:∵ 点E是AD的中点时由(2)可得 又∵△ABE∽△DEH
∴,又∵ ∴ 又∠BEH=∠BAE=90°
∴△BEH∽△BAE ……13分
(其他证明方法同样给分)
26.(本小题满分13分)
解:(1)由B (3,m)可知OC=3,BC=m,又△ABC为等腰直角三角形,∴AC=BC=m
OA=m﹣3,所以点A的坐标为(3﹣m,0) ……2分
(2)∵∠ODA=∠OAD=45°∴OD=OA= m﹣3,则点D的坐标是(0,m﹣3)
又抛物线的顶点为P(1,0),且过B、D两点,所以可设抛物线的解析式为:
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页
得:
∴抛物线的解析式为: ……6分
证明:(3)过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标是
则 ……8分
∵QM∥CE ∴△PQM∽△PEC 则
…..10分
∵QN∥FC ∴△BQN∽△BFC 则
…..12分
又∵AC=4 ∴
即 ……13分
九年级上期期末质量检测数学试题卷(2020.1) 第 13 页 共 13 页