- 330.77 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年山东省临沂市中考数学试卷
一、选择题(每小题3分,共42分)
1.(3分)|﹣2019|=( )
A.2019 B.﹣2019 C.12019 D.-12019
2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是( )
A.110° B.80° C.70° D.60°
3.(3分)不等式1﹣2x≥0的解集是( )
A.x≥2 B.x≥12 C.x≤2 D.x≤12
4.(3分)如图所示,正三棱柱的左视图( )
A. B.
C. D.
5.(3分)将a3b﹣ab进行因式分解,正确的是( )
A.a(a2b﹣b) B.ab(a﹣1)2
C.ab(a+1)(a﹣1) D.ab(a2﹣1)
6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是( )
A.0.5 B.1 C.1.5 D.2
7.(3分)下列计算错误的是( )
A.(a3b)•(ab2)=a4b3 B.(﹣mn3)2=m2n6
C.a5÷a﹣2=a3 D.xy2-15xy2=45xy2
8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A.23 B.29 C.13 D.19
9.(3分)计算a2a-1-a﹣1的正确结果是( )
A.-1a-1 B.1a-1 C.-2a-1a-1 D.2a-1a-1
10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:
天数(天)
1
2
1
3
最高气温(℃)
22
26
28
29
则这周最高气温的平均值是( )
A.26.25℃ B.27℃ C.28℃ D.29℃
11.(3分)如图,⊙O中,AB=AC,∠ACB=75°,BC=2,则阴影部分的面积是( )
A.2+23π B.2+3+23π C.4+23π D.2+43π
12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是( )
A.图象经过第一、二、四象限
B.y随x的增大而减小
C.图象与y轴交于点(0,b)
D.当x>-bk时,y>0
13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )
A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:
①小球在空中经过的路程是40m;
②小球抛出3秒后,速度越来越快;
③小球抛出3秒时速度为0;
④小球的高度h=30m时,t=1.5s.
其中正确的是( )
A.①④ B.①② C.②③④ D.②③
二、填空题:(每题3分,共15分)
15.(3分)计算:12×6-tan45°= .
16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是 .
17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共 块.
18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±4a,若4m4=10,则m= .
19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是 .
三、解答题:(共63分)
20.(7分)解方程:5x-2=3x.
21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)
78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93
整理上面的数据得到频数分布表和频数分布直方图:
成绩(分)
频数
78≤x<82
5
82≤x<86
a
86≤x<90
11
90≤x<94
b
94≤x<98
2
回答下列问题:
(1)以上30个数据中,中位数是 ;频数分布表中a= ;b= ;
(2)补全频数分布直方图;
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.
22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.
23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.
(1)求证:CF是⊙O的切线.
(2)若∠A=22.5°,求证:AC=DC.
24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.
x/h
0
2
4
6
8
10
12
14
16
18
20
y/m
14
15
16
17
18
14.4
12
10.3
9
8
7.2
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.
25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.
26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.
(1)求a、b满足的关系式及c的值.
(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.
(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.
2019年山东省临沂市中考数学试卷
参考答案与试题解析
一、选择题(每小题3分,共42分)
1.(3分)|﹣2019|=( )
A.2019 B.﹣2019 C.12019 D.-12019
【解答】解:|﹣2019|=2019.
故选:A.
2.(3分)如图,a∥b,若∠1=100°,则∠2的度数是( )
A.110° B.80° C.70° D.60°
【解答】解:∵a∥b,
∴∠1=∠3=100°.
∵∠2+∠3=180°,
∴∠2=180°﹣∠3=80°,
故选:B.
3.(3分)不等式1﹣2x≥0的解集是( )
A.x≥2 B.x≥12 C.x≤2 D.x≤12
【解答】解:移项,得﹣2x≥﹣1
系数化为1,得x≤12;
所以,不等式的解集为x≤12,
故选:D.
4.(3分)如图所示,正三棱柱的左视图( )
A. B.
C. D.
【解答】解:主视图是一个矩形,俯视图是两个矩形,左视图是三角形,
故选:A.
5.(3分)将a3b﹣ab进行因式分解,正确的是( )
A.a(a2b﹣b) B.ab(a﹣1)2
C.ab(a+1)(a﹣1) D.ab(a2﹣1)
【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),
故选:C.
6.(3分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF
=3,则BD的长是( )
A.0.5 B.1 C.1.5 D.2
【解答】解:∵CF∥AB,
∴∠A=∠FCE,∠ADE=∠F,
在△ADE和△FCE中∠A=∠FCE∠ADE=∠FDE=FE,
∴△ADE≌△CFE(AAS),
∴AD=CF=3,
∵AB=4,
∴DB=AB﹣AD=4﹣3=1.
故选:B.
7.(3分)下列计算错误的是( )
A.(a3b)•(ab2)=a4b3 B.(﹣mn3)2=m2n6
C.a5÷a﹣2=a3 D.xy2-15xy2=45xy2
【解答】解:
选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确
选项B,积的乘方,(﹣mn3)2=m2n6,选项正确
选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误
选项D,合并同类项,xy2-15xy2=55xy2-15xy2=45xy2,选项正确
故选:C.
8.(3分)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A.23 B.29 C.13 D.19
【解答】解:画“树形图”如图所示:
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为29;
故选:B.
9.(3分)计算a2a-1-a﹣1的正确结果是( )
A.-1a-1 B.1a-1 C.-2a-1a-1 D.2a-1a-1
【解答】解:原式=a2a-1-(a+1),
=a2a-1-a2-1a-1,
=1a-1.
故选:B.
10.(3分)小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:
天数(天)
1
2
1
3
最高气温(℃)
22
26
28
29
则这周最高气温的平均值是( )
A.26.25℃ B.27℃ C.28℃ D.29℃
【解答】解:这周最高气温的平均值为17(1×22+2×26+1×28+3×29)=27(℃);
故选:B.
11.(3分)如图,⊙O中,AB=AC,∠ACB=75°,BC=2,则阴影部分的面积是( )
A.2+23π B.2+3+23π C.4+23π D.2+43π
【解答】解:∵AB=AC,
∴AB=AC,
∵∠ACB=75°,
∴∠ABC=∠ACB=75°,
∴∠BAC=30°,
∴∠BOC=60°,
∵OB=OC,
∴△BOC是等边三角形,
∴OA=OB=OC=BC=2,
作AD⊥BC,
∵AB=AC,
∴BD=CD,
∴AD经过圆心O,
∴OD=32OB=3,
∴AD=2+3,
∴S△ABC=12BC•AD=2+3,S△BOC=12BC•OD=3,
∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2+3+60π×22360-3=2+23π,
故选:A.
12.(3分)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是( )
A.图象经过第一、二、四象限
B.y随x的增大而减小
C.图象与y轴交于点(0,b)
D.当x>-bk时,y>0
【解答】解:∵y=kx+b(k<0,b>0),
∴图象经过第一、二、四象限,
A正确;
∵k<0,
∴y随x的增大而减小,
B正确;
令x=0时,y=b,
∴图象与y轴的交点为(0,b),
∴C正确;
令y=0时,x=-bk,
当x>-bk时,y<0;
D不正确;
故选:D.
13.(3分)如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )
A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
【解答】证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD
∵对角线BD上的两点M、N满足BM=DN,
∴OB﹣BM=OD﹣DN,即OM=ON,
∴四边形AMCN是平行四边形,
∵OM=12AC,
∴MN=AC,
∴四边形AMCN是矩形.
故选:A.
14.(3分)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:
①小球在空中经过的路程是40m;
②小球抛出3秒后,速度越来越快;
③小球抛出3秒时速度为0;
④小球的高度h=30m时,t=1.5s.
其中正确的是( )
A.①④ B.①② C.②③④ D.②③
【解答】解:①由图象知小球在空中达到的最大高度是40m;故①错误;
②小球抛出3秒后,速度越来越快;故②正确;
③小球抛出3秒时达到最高点即速度为0;故③正确;
④设函数解析式为:h=a(t﹣3)2+40,
把O(0,0)代入得0=a(0﹣3)2+40,解得a=-409,
∴函数解析式为h=-409(t﹣3)2+40,
把h=30代入解析式得,30=-409(t﹣3)2+40,
解得:t=4.5或t=1.5,
∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;
故选:D.
二、填空题:(每题3分,共15分)
15.(3分)计算:12×6-tan45°= 3-1 .
【解答】解:12×6-tan45°=12×6-1=3-1,
故答案为:3-1.
16.(3分)在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是 (﹣2,2) .
【解答】解:∵点P(4,2),
∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,
∴点P′的横坐标为1﹣3=﹣2,
∴对称点P′的坐标为(﹣2,2).
故答案为:(﹣2,2).
17.(3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共 11 块.
【解答】解:设需用A型钢板x块,B型钢板y块,
依题意,得:4x+3y=37①x+2y=18②,
(①+②)÷5,得:x+y=11.
故答案为:11.
18.(3分)一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±4a,若4m4=10,则m= ±10 .
【解答】解:∵4m4=10,
∴m4=104,
∴m=±10.
故答案为:±10
19.(3分)如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是 83 .
【解答】解:∵DC⊥BC,
∴∠BCD=90°,
∵∠ACB=120°,
∴∠ACD=30°,
延长CD到H使DH=CD,
∵D为AB的中点,
∴AD=BD,
在△ADH与△BCD中,CD=DH∠ADH=∠BDCAD=BD,
∴△ADH≌△BCD(SAS),
∴AH=BC=4,∠H=∠BCD=90°,
∵∠ACH=30°,
∴CH=3AH=43,
∴CD=23,
∴△ABC的面积=2S△BCD=2×12×4×23=83,
故答案为:83.
三、解答题:(共63分)
20.(7分)解方程:5x-2=3x.
【解答】解:去分母得:5x=3x﹣6,
解得:x=﹣3,
经检验x=﹣3是分式方程的解.
21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)
78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93
整理上面的数据得到频数分布表和频数分布直方图:
成绩(分)
频数
78≤x<82
5
82≤x<86
a
86≤x<90
11
90≤x<94
b
94≤x<98
2
回答下列问题:
(1)以上30个数据中,中位数是 86 ;频数分布表中a= 6 ;b= 6 ;
(2)补全频数分布直方图;
(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.
【解答】解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;
故答案为:86;6;6;
(2)补全频数直方图,如图所示:
(3)根据题意得:300×1930=190,
则该校七年级300名学生中,达到优秀等级的人数为190人.
22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.
【解答】解:作BE⊥AD于点E,
∵∠CAB=30°,AB=4km,
∴∠ABE=60°,BE=2km,
∵∠ABD=105°,
∴∠EBD=45°,
∴∠EDB=45°,
∴BE=DE=2km,
∴BD=22+22=22km,
即BD的长是22km.
23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.
(1)求证:CF是⊙O的切线.
(2)若∠A=22.5°,求证:AC=DC.
【解答】(1)证明:∵AB是⊙O的直径,
∴∠ACB=∠ACD=90°,
∵点F是ED的中点,
∴CF=EF=DF,
∴∠AEO=∠FEC=∠FCE,
∵OA=OC,
∴∠OCA=∠OAC,
∵OD⊥AB,
∴∠OAC+∠AEO=90°,
∴∠OCA+∠FCE=90°,即OC⊥FC,
∴CF与⊙O相切;
(2)解:∵OD⊥AB,AC⊥BD,
∴∠AOE=∠ACD=90°,
∵∠AEO=∠DEC,
∴∠OAE=∠CDE=22.5°,
∵AO=BO,
∴AD=BD,
∴∠ADO=∠BDO=22.5°,
∴∠ADB=45°,
∴∠CAD=∠ADC=45°,
∴AC=CD.
24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h
)时,达到警戒水位,开始开闸放水.
x/h
0
2
4
6
8
10
12
14
16
18
20
y/m
14
15
16
17
18
14.4
12
10.3
9
8
7.2
(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.
(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.
(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.
【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.
(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得
b=148k+b=18解得:k=12,b=14,y与x的关系式为:y=12x+14,经验证(2,15),(4,16),(6,17)都满足y=12x+14
因此放水前y与x的关系式为:y=12x+14 (0<x<8)
观察图象当x>8时,y与x
就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.
因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)
所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+14 (0<x<8)和 y=144x.(x>8)
(3)当y=6时,6=144x,解得:x=24,
因此预计24h水位达到6m.
25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.
【解答】解:过点H作HN⊥BM于N,
则∠HNC=90°,
∵四边形ABCD为正方形,
∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,
①∵将△ADE沿AE所在的直线折叠得到△AFE,
∴△ADE≌△AFE,
∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠FAE,
∴AF=AB,
又∵AG=AG,
∴Rt△ABG≌Rt△AFG(HL),
∴∠BAG=∠FAG,∠AGB=∠AGF,
∴AG是∠BAF的平分线,GA是∠BGF的平分线;
②由①知,∠DAE=∠FAE,∠BAG=∠FAG,
又∵∠BAD=90°,
∴∠GAF+∠EAF=12×90°=45°,
即∠GAH=45°,
∵GH⊥AG,
∴∠GHA=90°﹣∠GAH=45°,
∴△AGH为等腰直角三角形,
∴AG=GH,
∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,
∴∠BAG=∠NGH,
又∵∠B=∠HNG=90°,AG=GH,
∴△ABG≌△GNH(AAS),
∴BG=NH,AB=GN,
∴BC=GN,
∵BC﹣CG=GN﹣CG,
∴BG=CN,
∴CN=HN,
∵∠DCM=90°,
∴∠NCH=∠NHC=12×90°=45°,
∴∠DCH=∠DCM﹣∠NCH=45°,
∴∠DCH=∠NCH,
∴CH是∠DCN的平分线;
③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,
由①知,∠AGB=∠AGF,
∴∠HGN=∠EGH,
∴GH是∠EGM的平分线;
综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.
26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.
(1)求a、b满足的关系式及c的值.
(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.
(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.
【解答】解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,
故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,
则函数表达式为:y=ax2+bx+2,
将点A坐标代入上式并整理得:b=2a+1;
(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,
则函数对称轴x=-b2a≥0,而b=2a+1,
即:-2a+12a≥0,解得:a≥-12,
故:a的取值范围为:-12≤a<0;
(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,
过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,
∵OA=OB,∴∠BAO=∠PQH=45°,
S△PAB=12×AB×PH=12×22×PQ×22=1,
则yP﹣yQ=1,
在直线AB下方作直线m,使直线m和l与直线AB等距离,
则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,
故:|yP﹣yQ|=1,
设点P(x,﹣x2﹣x+2),则点Q(x,x+2),
即:﹣x2﹣x+2﹣x﹣2=±1,
解得:x=﹣1或﹣1±2,
故点P(﹣1,2)或(﹣1+2,1)或(﹣1-2,-2).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/30 9:57:50;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521
相关文档
- 2018年山西省中考数学试卷含答案2021-11-0621页
- 2018年湖南省永州市中考数学试卷含2021-11-0627页
- 江苏省无锡市中考数学试卷含答案解2021-11-0630页
- 2018年四川省南充市中考数学试卷含2021-11-0621页
- 2019年甘肃省武威市中考数学试卷含2021-11-0627页
- 2018年江苏省常州市中考数学试卷含2021-11-017页
- 内蒙古赤峰市中考数学试卷含答案解2021-05-1321页
- 温州市中考数学试卷含答案2021-05-1313页
- 湖北省荆门市中考数学试卷含答案2021-05-1325页
- 陕西省中考数学试卷含答案解析2021-05-1331页