- 584.00 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
北京市西城区2009年抽样测试
初三数学试卷 2009.5
考生须知
1.本试卷共4页,共五道大题,25道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称和姓名。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分)
1.-2的相反数等于
A.2 B.-2 C. D.-
2.2009年,全国普通高校本、专科共计划招生6 290 000人,将6 290 000用科学记数法表示应为
A.6.29×105 B.62.9×105 C.6.29×106 D.0.629×107
3.右图是由五个相同的小正方体搭成的几何体,它的主视图是
4.若一个多边形的内角和为1080°,则这个多边形的边数为
A.5 B.6 C.7 D.8
5.2004~2008年社会消费品零售总额及增长速度情况如右图所示,那么社会消费品零售总额比上年增长最快的年份是
A.2005年 B.2006年
C.2007年 D.2008年
6.如图,AB∥DF,AC⊥BC于点C,CB与DF交于点E,若∠A=20°,则∠CEF等于
A.110° B.100°
C.80° D.70°
7.如图,在边长为1的等边三角形ABC中,若将两条含120°圆心角的、及边AC所围成的阴影部分的面积记为S,则S与△ABC面积的比等于
A. B. C. D.
8.若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是
A.m<a<b<n B.a<m<n<b
C.a<m<b<n D.m<a<n<b
二、填空题(共4道小题,每小题4分,共16分)
9.在函数y=中,自变量x的取值范围是________.
10.若+(y-4)2=0,则xy的值等于________.
11.如图,△ABC中,∠ABC的平分线交AC于E,BE⊥AC,DE∥BC交AB于D,若BC=4,则DE=________.
12.在Rt△ABC中,∠ACB=90°,BC<AC,若BC·AC=AB2,则∠A=________.
三、解答题(本题共30分,每小题5分)
13.计算:.
14.解不等式组在数轴上表示它的解集,并求它的整数解.
15.已知:如图,△ABC中,AB=AC,BC为最大边,点D、E分别在BC、AC上,BD=CE,F为BA延长线上一点,BF=CD.
求证:∠DEF=∠DFE.
16.解方程:.
17.已知抛物线y=-x2+(m+2)x+3m-20经过点(1,-3),求抛物线与x轴交点的坐标及顶点的坐标.
18.已知:如图,在梯形ABCD中,AD∥BC,AB=AD=2,∠A=60°,BC=4,求CD的长.
四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)
19.已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径等于4,tan∠ACB=,求CD的长.
20.有三个完全相同的小球,上面分别标有数字1、-2、-3,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),设第一次摸到的球上所标的数字为m,第二次摸到的球上所标的数字为n,依次以m、n作为点M的横、纵坐标.
(1)用树状图(或列表法)表示出点M(m,n)的坐标所有可能的结果;
(2)求点M(m,n)在第三象限的概率.
21.某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.
(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若运送三种苹果所获利润的情况如下表所示:
苹果品种
甲
乙
丙
每吨苹果所获利润(万元)
0.22
0.21
0.2
设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W
最大,并求出最大利润.
22.已知:如图,△ABC中,AC<AB<BC.
(1)在BC边上确定点P的位置,使∠APC=∠C.请画出图形,不写画法;
(2)在图中画出一条直线l,使得直线l分别与AB、BC边交于点M、N,并且沿直线l将△ABC剪开后可拼成一个等腰梯形.请画出直线l及拼接后的等腰梯形,并简要说明你的剪拼方法.
说明:本题只需保留画图痕迹,无需尺规作图.
五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)
23.已知:反比例函数y=和y=在平面直角坐标系xOy第一象限中的图象如图所示,点A在y=的图象上,AB∥y轴,与y=的图象交于点B,AC、BD与x轴平行,分别与y=、y=的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.
24.已知:如图,在平面直角坐标系xOy中,直线y=-x+6与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求点P的坐标;若不存在,说明理由;
(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA-QO|的取值范围.
25.已知:PA=,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.
(1)如图,当∠APB=45°时,求AB及PD的长;
(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.
北京市西城2009年抽样测试
初三数学评分标准及参考答案 2009.5
阅卷须知:
1.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
2.若考生的解法与本解法不同,正确者可参照评分参考给分。
一、选择题(共8道小题,每小题4分,共32分)
题号
1
2
3
4
5
6
7
8
答案
A
C
B
D
D
A
B
A
二、填空题(共4道小题,每小题4分,共16分)
题号
9
10
11
12
答案
x≠-2
1
2
15
三、解答题(本题共30分,每小题5分)
13.解:
=2+1-2-2…………………………………………………………………4分
=-1.………………………………………………………………………………5分
14.解:
由①得x≥1.………………………………………………………………………………1分
由②得x<5.………………………………………………………………………………2分
不等式组的解集在数轴上表示如下:
………………………………………………………………………………………3分
所以原不等式组的解集为1≤x<5.……………………………………………………4分
所以原不等式组的整数解为1,2,3,4.……………………………………………5分
15.证明:如图1,
∵AB=AC,
∴∠B=∠C.……………………………………………………………………………1分
在△BDF和△CED中,
∴△BDF≌△CED.………………………………………………………………………3分
∴DF=ED.………………………………………………………………………………4分
∴∠DEF=∠DFE.………………………………………………………………………5分
16.解:去分母,得x(x+2)-(x2-4)=2.………………………………………………1分
去括号,得x2+2x-x2+4=2.…………………………………………………………2分
整理,得2x=-2.………………………………………………………………………3分
解得x=-1.………………………………………………………………………………4分
经检验,x=-1是原方程的解.…………………………………………………………5分
17.解:∵抛物线y=-x2+(m+2)x+3m-20经过(1,-3)点,
∴-12+(m+2)+3m-20=-3.
整理,得4m-19=-3.
解得m=4.………………………………………………………………………………1分
∴二次函数的解析式为y=-x2+6x-8.………………………………………………2分
令y=0,可得-x2+6x-8=0.
解得x1=2,x2=4.………………………………………………………………………3分
∴抛物线与x轴的交点坐标为(2,0),(4,0).………………………………………4分
∵y=-x2+6x-8=-(x-3)2+1,
∴抛物线的顶点坐标为(3,1).…………………………………………………………5分
18.解:连结BD,作DE⊥BC于点E.(如图2) …………………………………………1分
∵AB=AD=2,∠A=60°,
∴△ABD为等边三角形,BD=2,∠ADB=60°.…………………………………2分
∵AD∥BC,
∴∠DBC=60°.…………………………………………………………………………3分
在Rt△BDE中,∠BED=90°,∠DBE=60°,
∴DE=BD·sin 60°=,BE=BD·cos 60°=1.…………………………………4分
在Rt△CDE中,∠CED=90°,CE=BC-BE=3,
.…………………………………………………………5分
解法二:作DE∥AB交BC于E,作EF⊥CD于F.
解法三:连结BD,并延长BA、CD交于E.
四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分)
19.解:(1)直线BD与⊙O相切.
图3
证明:如图3,连结OB.………………………………………………………………1分
∵∠OCB=∠CBD+∠D,∠1=∠D,
∴∠2=∠CBD.
∵AB∥OC,
∴∠2=∠A.
∴∠A=∠CBD.
∵OB=OC,
∴∠BOC+2∠3=180°,
∵∠BOC=2∠A,
∴∠A+∠3=90°.
∴∠CBD+∠3=90°.
∴∠OBD=90°.…………………………………………………………………………2分
∴直线BD与⊙O相切.…………………………………………………………………3分
(2)解:∵∠D=∠ACB,tan∠ACB=,
∴tan D=.……………………………………………………………………………4分
在Rt△OBD中,∠OBD=90°,OB=4,tanD=.
,.
∴CD=OD-OC=1.……………………………………………………………………5分
20.解:(1)组成的点M(m,n)的坐标的所有可能性为:
或列表如下:
第一次
第二次
1
2
3
1
(1,1)
(-2,1)
(-3,1)
-2
(1,-2)
(-2,-2)
(-3,-2)
-3
(1,-3)
(-2,-3)
(-3,-3)
…………………………………………………………………………………………3分
(2)落在第三象限的点有(-2,-2),(-2,-3),(-3,-2),(-3,-3),因此点M落在第三象限的概率为.…………………………………………………………5分
21.解:(1)∵8x+10y+11(10-x-y)=100,……………………………………………1分
∴y与x之间的函数关系式为y=-3x+10.…………………………………………2分
∵y≥1,解得x≤3.
∵x≥1,10-x-y≥1,且x是正整数,
∴自变量x的取值范围是x=1或x=2或x=3.………………………………………3分
(2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21.…………………4分
因为W随x的增大而减小,所以x取1时,可获得最大利润,此时W=20.86(万元).
…………………………………………………………………………………………5分
获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.……………………………………………………………………………………6分
22.解:(1)答案见图4(任选一种即可).…………………………………………………2分
(2)答案见图5.…………………………………………………………………………3分
剪拼方法:取AB的中点M,过点M作AP的平行线l,与BC交于点N,过点A作BC的平行线,与l交于点H,将△BMN绕点M顺时针旋转180°到△AMH,则四边形为拼接后的等腰梯形.
图4 图5
五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)
23.解:(1)如图6,当点A的横坐标为2时,点A、B、C、D的坐标分别为A(2,4),B(2,1),C(,4),D(8,1).………………………………………………………………1分
解一:直线CD的解析式为.…………………………………………2分
∵AB∥y轴,F为梯形ACBD的对角线的交点,
∴x=2时,.
∴点F的坐标为(2,).……………………………………………………3分
图2
解二:AC=,BD=6,AB=3.
∵梯形ACBD,AC∥BD,F为梯形ACBD的对角线的交点,
∴△ACF∽△BDF.
.
,,点F的纵坐标为.………………………………2分
∴点F的坐标为(2,).……………………………………………………3分
(2)如图7,作BM⊥x轴于点M.作CN⊥x轴于点N.当点A的横坐标为m时,点A、B、C、D的坐标分别为.
图7
.……………………………………………4分
S△OBC=S梯形CNMB+S△OCN-S△OBM
=S梯形CNMB.……………………………………………5分
∴S△OBC>S△ABC…………………………………………………………………………6分
(3)点A的坐标为(2,4).……………………………………………………………7分
24.解:(1)点C的坐标为(3,0).………………………………………………………1分
∵点A、B的坐标分别为A(8,0),B(0,6),
∴可设过A、B、C三点的抛物线的解析式为y=a(x-3)(x-8).
将x=0,y=6代入抛物线的解析式,得a=.……………………………………2分
∴过A、B、C三点的抛物线的解析式为y=.………………………3分
(2)可得抛物线的对称轴为x=,顶点D的坐标为,设抛物线的对称轴与x轴的交点为G.
直线BC的解析式为y=-2x+6.…………………………………4分
设点P的坐标为(x,-2x+6).
图8
解法一:如图8,作OP∥AD交直线BC于点P,连结AP,作PM⊥x轴于点M.
∵OP∥AD,
∴∠POM=∠GAD,tan∠POM=tan∠GAD.
,即.
解得x=.经检验x=是原方程的解.
此时点P的坐标为.………………………………………………5分
但此时OM=,,OM<GA.
,,∠POM=∠GAD,
∴OP<AD,即四边形的对边OP与AD平行但不相等,
∴直线BC上不存在符合条件的点P.………………………………………6分
解法二:如图9,取OA的中点E,作点D关于点E的对称点P,作PN⊥x轴于点N.
则∠PEO=∠DEA,PE=DE.
可得△PEN≌△DEG.
由OE==4,可得E点的坐标为(4,0).
,,.
∴点P的坐标为.……………………………………………………5分
∵时,,
∴点P不在直线BC上.
∴直线BC上不存在符合条件的点P.………………………………………6分
图9 图10
(3)|QA-QO|的取值范围是0≤|QA-QO|≤4.
说明:如图10,由对称性可知QO=QH,|QA-QO|=|QA-QH|.当点Q与点B重合时,Q、H、A三点共线,|QA-QO|取得最大值4(即为AH的长);设线段OA的垂直平分线与直线BC的交点为K,当点Q与点K重合时,|QA-QO|取得最小值0.
25.解:(1)①如图11,作AE⊥PB于点E.……………………………………………1分
图11
∵△APE中,∠APE=45°,PA=,
∴AE=PA·sin∠APE=×=1,
PE=PA·cos∠APE=×=1.
∵PB=4,
∴BE=PB-PE=3.………………………………………………………………………2分
在Rt△ABE中,∠AEB=90°,
.…………………………………………………………3分
②解法一:如图12,因为四边形ABCD为正方形,可将△PAD绕点A顺时针旋转90°得到△P′AB,可得△PAD≌△P′AB,PD=P′B,PA=P′A.
∴∠PAP′=90°,∠APP′=45°,∠P′PB=90°.
∴PP′=PA=2.…………………………………………………………4分
∴PD=P′B=.………………………5分
图12
解法二:如图13,过点P作AB的平行线,与DA的延长线交于F,设DA的延长线交PB于G.
在Rt△AEG中,可得
,,PG=PB-BE-EG=.
在Rt△PFG中,可得PF=PG·cos∠FPG=PG·cos∠ABE=.
FG=.…………………………………………………………………4分
在Rt△PDF中,可得
.
………………………………………………………………………………5分
图13
(2)如图14所示,将△PAD绕点A顺时针旋转90°得到△P′AB,PD的最大值即为P′B的最大值.
∵△P′PB中,P′B<PP′+PB,PP′=PA=2,PB=4,
且P、D两点落在直线AB的两侧,
∴当P′、P、B三点共线时,P′B取得最大值(见图15).
此时P′B=PP′+PB=6,即P′B的最大值为6.………………………………………6分
此时∠APB=180°-∠APP′=135°.……………………………………………………7分
图14 图15