- 381.50 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学真题汇编:二次函数
一、选择题
1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是( ) A. ①③ B. ③④ C. ②④ D. ②③
2.如图,函数 和 ( 是常数,且 )在同一平面直角坐标系的图象可能是( )
A. B. C. D.
3.关于二次函数 ,下列说法正确的是( )
A. 图像与 轴的交点坐标为 B. 图像的对称轴在 轴的右侧
C. 当 时, 的值随 值的增大而减小 D. 的最小值为-3
4.二次函数 的图像如图所示,下列结论正确是( )
A. B. C. D. 有两个不相等的实数根
5.若抛物线 与 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线 ,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. (-3,-6) B. (-3,0) C. (-3,-5) D. (-3,-1)
7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是( )
A. 点火后9s和点火后13s的升空高度相同 B. 点火后24s火箭落于地面
C. 点火后10s的升空高度为139m D. 火箭升空的最大高度为145m
8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
9.如图是二次函数 ( , , 是常数, )图象的一部分,与 轴的交点 在点 和 之间,对称轴是 .对于下列说法:① ;② ;③ ;④ ( 为实数);⑤当 时, ,其中正确的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是( )A.B.C.D.
11.四位同学在研究函数 (b,c是常数)时,甲发现当 时,函数有最小值;乙发现 是方程 的一个根;丙发现函数的最小值为3;丁发现当 时, .已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A. 甲 B. 乙 C. 丙 D. 丁
12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为( )
A. ( B.
C. D. (
二、填空题
13.已知二次函数 ,当x>0时,y随x的增大而________(填“增大”或“减小”)
14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
三、解答题
15.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点P1 , P2 , P3的坐标,机器人能根据图2,绘制图形。若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式。请根据以下点的坐标,求出线段的长度或抛物线的函数关系式。
①P1(4,0),P2(0,0),P3(6,6)。
②P1(0,0),P2(4,0),P3(6,6)。
16.如图,抛物线 (a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C , D在抛物线上.设A(t , 0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G , H , 且直线GH平分矩形的面积时,求抛物线平移的距离.
17.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:
(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?
(2)在飞行过程中,小球从飞出到落地所用时间是多少?
(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
18.在平面直角坐标系中,点 ,点 .已知抛物线 ( 是常数),定点为 .
(1)当抛物线经过点 时,求定点 的坐标;
(2)若点 在 轴下方,当 时,求抛物线的解析式;
(3)无论 取何值,该抛物线都经过定点 .当 时,求抛物线的解析式.
19.如图,已知二次函数 的图象经过点 ,与 轴分别交于点 ,点 .点 是直线 上方的抛物线上一动点.
(1)求二次函数 的表达式;
(2)连接 , ,并把 沿 轴翻折,得到四边形 .若四边形 为菱形,请求出此时点 的坐标;
(3)当点 运动到什么位置时,四边形 的面积最大?求出此时 点的坐标和四边形 的最大面积.
20.如图1,四边形 是矩形,点 的坐标为 ,点 的坐标为 .点 从点 出发,沿 以每秒1个单位长度的速度向点 运动,同时点 从点 出发,沿 以每秒2个单位长度的速度向点 运动,当点 与点 重合时运动停止.设运动时间为 秒.
(1)当 时,线段 的中点坐标为________;
(2)当 与 相似时,求 的值;
(3)当 时,抛物线 经过 、 两点,与 轴交于点 ,抛物线的顶点为 ,如图2所示.问该抛物线上是否存在点 ,使 ,若存在,求出所有满足条件的 点坐标;若不存在,说明理由.
21.平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数的图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
22.如图,已知抛物线 与 轴交于点 和点 ,交 轴于点 .过点 作 轴,交抛物线于点 .
(1)求抛物线的解析式;
(2)若直线 与线段 、 分别交于 、 两点,过 点作 轴于点 ,过点 作 轴于点 ,求矩形 的最大面积;
(3)若直线 将四边形 分成左、右两个部分,面积分别为 、 ,且 ,求 的值.
23.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.
(1)当x=2时,求⊙P的半径;
(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到________的距离等于到________的距离的所有点的集合.
(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.