• 8.37 MB
  • 2022-04-01 发布

中考数学压轴题解题方法大全及技巧、专项训练有答案解析大全集

  • 173页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考数学压轴题解题方法大全及技巧、专项训练有答案解析大全集中考数学压轴题解题技巧解中考数学压轴题秘诀(一)数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。解中考数学压轴题秘诀(二)具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。1、以坐标系为桥梁,运用数形结合思想:   纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。  2、以直线或抛物线知识为载体,运用函数与方程思想:  直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。  3、利用条件或结论的多变性,运用分类讨论的思想:  分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。  4、综合多个知识点,运用等价转换思想:  任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。  5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。  6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。综合近年来各地中考的实际情况,压轴题多以函数和几何综合题的形式出现。压轴题考查知识点多,条件也相当隐蔽,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。下面谈谈中考数学压轴题的解题技巧(先以2009年河南中考数学压轴题为例)。如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.解:(1)点A的坐标为(4,8)…………………1分将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-,b=4∴抛物线的解析式为:y=-x2+4x…………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=∴PE=AP=t.PB=8-t.∴点E的坐标为(4+t,8-t).∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8.…………………5分∴EG=-t2+8-(8-t)=-t2+t.∵-<0,∴当t=4时,线段EG最长为2.…………………7分②共有三个时刻.…………………8分t1=,t2=,t3=.…………………11分压轴题的做题技巧如下:1、对自身数学学习状况做一个完整的全面的认识,根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点” 一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。2、解数学压轴题做一问是一问。第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要工整,布局要合理;过程会写多少写多少,但是不要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。3、解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。压轴题解题技巧练习一、对称翻折平移旋转1.(2010年南宁)如图12,把抛物线(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称.点、、分别是抛物线、与轴的交点,、分别是抛物线、的顶点,线段交轴于点.(1)分别写出抛物线与的解析式;(2)设是抛物线上与、两点不重合的任意一点,点是点关于轴的对称点,试判断以、、、为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由. 12题题图12yxAOBPN图2C1C4QEF2(2)yxAOBPM图1C1C2C32(1)2.(福建2009年宁德市)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(4分)(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分)(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.(5分)一、动态:动点、动线3.(2010年辽宁省锦州)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1、x2是方程x2-2x-8=0的两个根.APOBECxy(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.4.(2008年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. DBAQCP图②AQCPB图①AQCPB5.(09年吉林省)如图所示,菱形ABCD的边长为6厘米,∠B=60°.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为0的三角形),解答下列问题:(1)点P、Q从出发到相遇所用时间是__________秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是__________秒;(3)求y与x之间的函数关系式.6.(2009年浙江省嘉兴市)CABNM(第24题)如图,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?一、圆7.(2010青海)如图10,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;(3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长. CxxyyAOBEDACBCDG图1图28.(2009年中考天水)如图1,在平面直角坐标系xOy,二次函数y=ax2+bx+c(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=.(1)求这个二次函数的解析式;(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.9.(09年湖南省张家界市)在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D.(1)求点C的坐标和过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.yxOCDBA1-4OxyNCDEFBMA10.(2009年潍坊市)如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点 ,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.四、比例比值取值范围11.(2010年怀化)图9是二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.图9图112.(湖南省长沙市2010年)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.BAPxCQOy第26题图 13.(成都市2010年)在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线.(1)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为,圆心在抛物线上运动,则当取何值时,⊙Q与两坐轴同时相切?五、探究型14.(内江市2010)如图,抛物线与轴交于两点,与轴交于点.(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;(2)经探究可知,与的面积比不变,试求出这个比值;(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由. 15.(重庆市潼南县2010年)如图,已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.16.(2008年福建龙岩)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且.(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.ACByx01117.(09年广西钦州)26.(本题满分10分)如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)填空:点C的坐标是_▲_,b=_▲_,c=_▲_;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.18.(09年重庆市)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E. (1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.ADBCEOxyyOxCNBPMA19.(09年湖南省长沙市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连结AC、BC.(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.20.(08江苏徐州)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q【探究一】在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式 为_________,其中的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.六、最值类22.(2010年恩施)如图11,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.解中考数学压轴题秘诀(一)数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。(一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③ 二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。(二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。解中考数学压轴题秘诀(二)具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。1、以坐标系为桥梁,运用数形结合思想:  纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。  2、以直线或抛物线知识为载体,运用函数与方程思想:  直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。  3、利用条件或结论的多变性,运用分类讨论的思想:  分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。  4、综合多个知识点,运用等价转换思想:   任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。  5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。近几年中考数学中运动几何问题倍受青睐,它不仅综合考查初中数学骨干知识,如三角形全等与相似、图形的平移与旋转、函数(一次函数、二次函数与反比例函数)与方程等,更重要的是综合考查初中基本数学思想与方法。此类题型也往往起到了考试的选拔作用,使学生之间的数学考试成绩由此而产生距离,所以准确快速解决此类问题是赢得中考数学胜利的关键。如何准确、快速解决此类问题呢?关键是把握解决此类题型的规律与方法――以静制动。另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是本题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出答案,更重要的是明确此题的方法和思路。下面以具体实例简单的说一说此类题的解题方法。一、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题例1:(北京市石景山区2010年数学期中练习)在△ABC中,∠B=60°,BA=24CM,BC=16CM,(1)求△ABC的面积;ACB(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC的面积的一半?(3)在第(2)问题前提下,P,Q两点之间的距离是多少?点评:此题关键是明确点P、Q在△ABC边上的位置,有三种情况。(1)当0﹤t≦6时,P、Q分别在AB、BC边上;(2)当6﹤t≦8时,P、Q分别在AB延长线上和BC边上;(3)当t>8时,P、Q分别在AB、BC边上延长线上.然后分别用第一步的方法列方程求解.例2:(北京市顺义2010年初三模考)已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y, (1)写出y与x的关系式(2)求当y=时,x的值等于多少?点评:这个问题的关键是明确点P在四边形ABCD边上的位置,根据题意点P的位置分三种情况:分别在AB上、BC边上、EC边上.例3:(北京市顺义2010年初三模考)如图1,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿梯形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,如果关于x的函数y的图象如图2所示,那么△ABC的面积为()xAOQPByA.32B.18C.16D.10例4:(09齐齐哈尔)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段运动,速度为每秒1个单位长度,点沿路线→→运动.(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.点评:本题关键是区分点P的位置:点P在OB上,点P在BA上。例5:(2009宁夏)已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;CPQBAMN(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.解:(1)过点作,垂足为.则,当运动到被垂直平分时,四边形是矩形,即时,CPQBAMN四边形是矩形,秒时,四边形是矩形. ,CPQBAMN(2)当时,当时,当时,点评:此题关键也是对P、Q两点的不同位置进行分类。图(3)CcDcAcBcQcPcEc例6:(2009四川乐山).如图(15),在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒.(1)求边的长;(2)当为何值时,与相互平分;(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值?最大值是多少?6.解:(1)作于点,如图(3)所示,则四边形为矩形.又2分在中,由勾股定理得:(2)假设与相互平分.由则是平行四边形(此时在上).即解得即秒时,与相互平分.(3)①当在上,即时,作于,则即= 当秒时,有最大值为②当在上,即时,=易知随的增大而减小.故当秒时,有最大值为综上,当时,有最大值为二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。AQCDBP例7:(包头)如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?解:(1)①∵秒,∴厘米,∵厘米,点为的中点,∴厘米.又∵厘米,∴厘米,∴.又∵,∴,∴.②∵,∴,又∵,,则, ∴点,点运动的时间秒,∴厘米/秒.(2)设经过秒后点与点第一次相遇,由题意,得,解得秒.∴点共运动了厘米.∵,∴点、点在边上相遇,∴经过秒点与点第一次在边上相遇.例8:(09济南)如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒.(1)求的长.(2)当时,求的值.(3)试探究:为何值时,为等腰三角形.解:(1)如图①,过、分别作于,于,则四边形是矩形∴在中,在,中,由勾股定理得,(图①)ADCBKH(图②)ADCBGMN∴(2)如图②,过作交于点,则四边形是平行四边形∵∴∴∴由题意知,当、运动到秒时,∵∴又∴∴即解得, ADCBMN(图③)(图④)ADCBMNHE(3)分三种情况讨论:①当时,如图③,即∴②当时,如图④,过作于解法一:由等腰三角形三线合一性质得在中,又在中,∴解得∵∴∴即∴③当时,如图⑤,过作于点.(图⑤)ADCBHNMF解法一:(方法同②中解法一)解得解法二:∵∴∴即∴综上所述,当、或时,为等腰三角形ABOCDPQ例9:(呼和浩特)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90º,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C 同时出发,当其中一点到达端点时,另一个动点也随之停止运动.设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?解:(1)∵直角梯形当时,四边形为平行四边形.OAPDBQC由题意可知:,,OAPDBQCHE当时,四边形为平行四边形.(2)解:设与相切于点过点作垂足为直角梯形由题意可知:为的直径,为的切线在中,即:,7分因为在边运动的时间为秒,而(舍去)ABDCPQMN(第25题)当秒时,与相切.例10.(2009山东淄博)如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,(舍去).因为BQ+CM=,此时点Q与点M不重合.所以符合题意.②当点Q与点M重合时,.此时,不符合题意.故点Q与点M不能重合.所以所求x的值为.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由,解得.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由,解得.当x=4时四边形NQMP是平行四边形.所以当时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即.解得.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以,以P,Q,M,N为顶点的四边形不能为等腰梯形.第一是以静化动,把问的某某秒后的那个时间想想成一个点,然后再去解,第二是对称性,如果是二次函数的题,一定要注意对称性。第三是关系法:你可以就按照图来,就算是图画的在不对,只要你把该要的条件列成一些关系,列出一些方程来。中等的动点题也就没问题了。但是在难一点的动点题就要你的能力了,比如让你找等腰三角形的题,最好带着圆规,这样的题你要从三个顶点考虑,每一条边都要想好,然后再求出来看看在不在某个范围内1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。二.重点难点:1.重点:利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律。2.难点:探索存在的各种可能性以及发现所形成的客观规律。三.具体内容:通常情景中的“探索发现”型问题可以分为如下类型:1.条件探索型——结论明确,而需探索发现使结论成立的条件的题目。 2.结论探索型——给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目。3.存在探索型——在一定的条件下,需探索发现某种数学关系是否存在的题目。4.规律探索型——在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目。由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:(1)利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律。(2)反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致。(3)分类讨论法。当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果。(4)类比猜想法。即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证。以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用。【典型例题】[例1](2007呼和浩特市)在四边形中,顺次连接四边中点,构成一个新的四边形,请你对四边形填加一个条件,使四边形成为一个菱形,这个条件是。解:或四边形是等腰梯形(符合要求的其它答案也可以) [例2](2007荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1。(1)四边形ABCD是平行四边形吗?说出你的结论和理由:______________。(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:_________________________。(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为______时,四边形ABC1D1为矩形,其理由是______________________;当点B的移动距离为______时,四边形ABC1D1为菱形,其理由是______________________。(图3、图4用于探究)解:(1)是,此时ADBC,一组对边平行且相等的四边形是平行四边形。(2)是,在平移过程中,始终保持ABC1D1,一组对边平行且相等的四边形是平行四边形。(3),此时∠ABC1=90°,有一个角是直角的平行四边形是矩形。,此时点D与点B1重合,AC1⊥BD1,对角线互相垂直的平行四边形是菱形。[例3](2006广东)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点O、点A重合。连结CP,过点P作PD交AB于点D。(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且=,求这时点P的坐标。 解析:(1)过C作CH⊥OA于H,BE⊥OA于E则△OCH≌△ABE,四边形CHEB为矩形∴OH=AE,CH=BE∵OC=AB=4,∠COA=60°∴CH=,OH=2∴CB=HE=3∴OE=OH+HE=5∵BE=CH=∴B(5,)(2)∵∠COA=60°,△OCP为等腰三角形∴△OCP是等边三角形∴OP=OC=4∴P(4,0)即P运动到(4,0)时,△OCP为等腰三角形(3)∵∠CPD=∠OAB=∠COP=60°∴∠OPC+∠DPA=120°又∵∠PDA+∠DPA=120° ∴∠OPC=∠PDA∵∠OCP=∠A=60°∴△COP∽△PAD∴∵,AB=4∴BD=∴AD=即∴得OP=1或6∴P点坐标为(1,0)或(6,0)[例4](2007云南省)已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F。请探求DF与AB有何数量关系?写出你所得到的结论并给予证明。解:经探求,结论是:DF=AB证明如下:∵四边形ABCD是矩形, ∴∠B=AD∥BC,∴∠DAF=∠AEB。∵DF⊥AE∴∠AFD=∵AE=AD∴ABE≌DFA∴AB=DF[例5](2007北京市)我们知道:有两条边相等的三角形叫做等腰三角形。类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形。(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在中,点分别在上,设相交于点,若,。请你写出图中一个与相等的角,并猜想图中哪个四边形是等对边四边形;(3)在中,如果是不等于的锐角,点分别在上,且。探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论。解:(1)回答正确的给1分(如平行四边形、等腰梯形等)。(2)答:与相等的角是(或)。四边形是等对边四边形。(3)答:此时存在等对边四边形,是四边形。 证法一:如图1,作于点,作交延长线于点。因为,为公共边,所以。所以。因为,,所以。可证。所以。所以四边形是等边四边形。证法二:如图2,以为顶点作,交于点。因为,为公共边,所以。所以,。所以。因为,, 所以。所以。所以。所以。所以四边形是等边四边形。说明:当时,仍成立。只有此证法,只给1分。[例6](07山东滨州)如图1所示,在中,,,为的中点,动点在边上自由移动,动点在边上自由移动。(1)点的移动过程中,是否能成为的等腰三角形?若能,请指出为等腰三角形时动点的位置。若不能,请说明理由。(2)当时,设,,求与之间的函数解析式,写出的取值范围。(3)在满足(2)中的条件时,若以为圆心的圆与相切(如图2),试探究直线与圆O的位置关系,并证明你的结论。解:如图,(1)点移动的过程中,能成为的等腰三角形。此时点的位置分别是:①是的中点,与重合。 ②。③与重合,是的中点。(2)在和中,,,。又,。。,,,。(3)与圆O相切。,。。即。又,。。点到和的距离相等。与圆O相切,点到的距离等于圆O的半径。与圆O相切。[例7](2007乐山)如图,在矩形中,,。直角尺的直角顶点在上滑动时(点与不重合),一直角边经过点,另一直角边交于点。我们知道,结论“”成立。(1)当时,求的长;(2)是否存在这样的点,使的周长等于周长的倍?若存在,求出的长;若不存在,请说明理由。 解:(1)在中,由,得,由知,。(2)假设存在满足条件的点,设,则由知,,解得,此时,符合题意。[例8](2006湖南衡阳)观察算式:1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52用代数式表示这个规律(n为正整数):1+3+5+7+9++(2n-1)=。分析与解答:由以上各等式知,等式左端是从1开始的连续若干个奇数之和,右端是左端奇数个数的平方,由此易得1+3+5+7+…+(2n-1)=n2,填n2。【模拟试题】1.(2006年山东省)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O。给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD。(1)上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形。 2.(2006年随州市)如图,矩形ABCD中,M是AD的中点。(1)求证:△ABM≌△DCM;(2)请你探索,当矩形ABCD中的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由。3.如图,在△ABC中,D为BC上一个动点(D点与B、C不重合),且DE∥AC交AB于点E,DF∥AB交AC于点F。(1)试探究,当AD满足什么条件时,四边形AEDF是菱形?并说明理由。(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF是正方形?请说明理由。4.如图,AB是⊙O的直径,EF是⊙O的切线,切点是C。点D是EF上一个动点,连接AD。试探索点D运动到什么位置时,AC是∠BAD的平分线,请说明理由。5.(2006年成都市)已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF。 (1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论。6.(2006广西贺州市)观察图中一列有规律的数,然后在“?”处填上一个合适的数,这个数是.7.(2006广西百色市)如图,A1A2B是直角三角形,且A1A2=A2B=a,A2A3⊥A1B,垂足为A3,A3A4⊥A2B,垂足为A4,A4A5⊥A3B,垂足为A5,……,An+1An+2⊥AnB,垂足为An+2,则线段An+1An+2(n为自然数)的长为()A.B.C.D.8.(2007成都市)在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点和。(1)求此二次函数的表达式;(2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达式及点的坐标;若不存在,请说明理由; (3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角与的大小(不必证明),并写出此时点的横坐标的取值范围。9.(2007绵阳市)如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为。设⊙M与y轴交于D,抛物线的顶点为E。(1)求m的值及抛物线的解析式;(2)设∠DBC=a,∠CBE=b,求sin(a-b)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由。 动点与相似1.已知∠AOB=45°,P是边OA上一点,OP=,以点P为圆心画圆,圆P交OA于点C(点P在O、C之间,如图)。点Q是直线OB上的一个动点,连PQ,交圆P于点D,已知,当OQ=7时,,(1)求圆P半径的长;(2)当点Q在射线OB上运动时,以点Q为圆心,OQ为半径作圆Q,若圆Q与圆P相切,试求OQ的长度;ECQBAOPDOCQBAPD(3)连CD并延长交直线OB于点E,是否存在这样的点Q,使得以O、C、E为顶点的三角形与△OPQ相似,若存在,试确定Q点的位置;若不存在,试说明理由。2.已知:如图,在平面直角坐标系中,是直角三角形,,点的坐标分别为,,∠BAC的正切值是3/4(1)求过点的直线的函数解析式;(2)在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;(3)在(2)的条件下,如果分别是和上的动点,连接,设,问是否存在这样的,使得与相似,如存在,请求出的值;如不存在,请说明理由. ACOBxy3.如图,双曲线和在第二象限中的图像,A点在的图像上,点A的横坐标为m(m<0),AC∥y轴交图像于点C,AB、DC均平行x轴,分别交、的图像于点B、D.(1)用m表示A、B、C、D的坐标;(2)求证:梯形ABCD的面积是定值;(3)若△ABC与△ACD相似,求m的值.ABO4.如图,直线(>)与分别交于点,,抛物线经过点,顶点在直线上.(1)求的值;(2)求抛物线的解析式;(3)如果抛物线的对称轴与轴交于点,那么在对称轴上找一点,使得和相似,求点的坐标. 5.如图所示,抛物线(m>0)的顶点为A,直线l:与y轴交点为B.(1)写出抛物线的对称轴及顶点A的坐标(用含m的代数式表示);(2)证明点A在直线l上,并求∠OAB的度数;(3)动点Q在抛物线对称轴上,问抛物线上是否存在点P,使以点P、Q、A为顶点的三角形与⊿OAB全等?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,请说明理由.xy06.在平面直角坐标系中,将抛物线沿轴向上平移1个单位,再沿轴向右平移两个单位,平移后抛物线的顶点坐标记作A,直线与平移后的抛物线相交于B,与直线OA相交于C.(1)求△ABC面积;(2)点P在平移后抛物线的对称轴上,如果△ABP与△ABC相似,求所有满足条件的P点坐标.7.设抛物线与x轴交于两个不同的点A(一1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.(1)求m的值和抛物线的解析式; (2)已知点D(1,n)在抛物线上,过点A的直线交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.(3)在(2)的条件下,△BDP的外接圆半径等于________________.图1OPAxBDCQy图2OPAxBCQyE8.将一矩形纸片放在平面直角坐标系中,,,.动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动.当其中一点到达终点时,另一点也停止运动.设点的运动时间为(秒).(1)用含的代数式表示;(2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标;(3)连结,将沿翻折,得到,如图2.问:与能否平行?与能否垂直?若能,求出相应的值;若不能,说明理由.9.在直角坐标系中,设点,点(均为非零常数).平移二次函数的图象,得到的抛物线满足两个条件:①顶点为;②与轴相交于两点().连接.(1)是否存在这样的抛物线,使得请你作出判断,并说明理由;(2)如果,且,求抛物线对应的二次函数的解析式. 10.已知:抛物线(a≠0),顶点C(1,),与x轴交于A、B两点,.(1)求这条抛物线的解析式.(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由.(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断是否成立.若成立,请给出证明;若不成立,请说明理由.COxADPMEBNy11.抛物线与轴的交点为M、N.直线与轴交于P(-2,0).与y轴交于C,若A、B两点在直线上.且AO=BO=,AO⊥BO.D为线段MN的中点。OH为Rt△OPC斜边上的高.(1)OH的长度等于;k=,b=.(2)是否存在实数a,使得抛物线上有一点F.满足以D、N、E为顶点的三角形与△AOB相似? 若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式.同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由).并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PB·PG10,写出探索过程12.在直角坐标系中,设点,点(均为非零常数).平移二次函数的图象,得到的抛物线满足两个条件:①顶点为;②与轴相交于两点().连接.(1)是否存在这样的抛物线,使得请你作出判断,并说明理由;(2)如果,且,求抛物线对应的二次函数的解析式.13.已知抛物线的顶点为,且经过原点O,与x轴的另一个交点为B。(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且一O,C,D,B 四点为顶点的四边形为平行四边形,求D的坐标。(3)连接OA,AB,在x轴的下方的抛物线上是否存在点P,使得?若存在,求出p点坐标;若不存在说明理由。14.直线y=x+2分别交x,y轴与点A,C。P是直线上在第一象限内的一点,PB⊥x轴,B为垂足,.(1)求点P的坐标(2)设点R与点P在同一个反比例函数的图像上,且点R在直线PB的右侧。作PT⊥x轴,T为垂足,当△BTR与△AOC相似时,求点R的坐标。15.抛物线经过点A(4,0),B(1,0),C(0,2)三点。(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥X轴,垂足为M,是否存在点P,使得以A,P,M为顶点的三角形与△OAB相似?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标。 第一是以静化动,把问的某某秒后的那个时间想想成一个点,然后再去解,第二是对称性,如果是二次函数的题,一定要注意对称性。第三是关系法:你可以就按照图来,就算是图画的在不对,只要你把该要的条件列成一些关系,列出一些方程来。中等的动点题也就没问题了。但是在难一点的动点题就要你的能力了,比如让你找等腰三角形的题,最好带着圆规,这样的题你要从三个顶点考虑,每一条边都要想好,然后再求出来看看在不在某个范围内1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。二.重点难点: 1.重点:利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律。2.难点:探索存在的各种可能性以及发现所形成的客观规律。三.具体内容:通常情景中的“探索发现”型问题可以分为如下类型:1.条件探索型——结论明确,而需探索发现使结论成立的条件的题目。2.结论探索型——给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目。3.存在探索型——在一定的条件下,需探索发现某种数学关系是否存在的题目。4.规律探索型——在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目。由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:(1)利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律。(2)反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致。(3)分类讨论法。当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果。(4)类比猜想法。即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证。以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用。【典型例题】[例1](2007呼和浩特市)在四边形中,顺次连接四边中点,构成一个新的四边形,请你对四边形填加一个条件,使四边形成为一个菱形,这个条件是。 解:或四边形是等腰梯形(符合要求的其它答案也可以)[例2](2007荆门市)将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1。(1)四边形ABCD是平行四边形吗?说出你的结论和理由:______________。(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:_________________________。(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为______时,四边形ABC1D1为矩形,其理由是______________________;当点B的移动距离为______时,四边形ABC1D1为菱形,其理由是______________________。(图3、图4用于探究)解:(1)是,此时ADBC,一组对边平行且相等的四边形是平行四边形。(2)是,在平移过程中,始终保持ABC1D1,一组对边平行且相等的四边形是平行四边形。(3),此时∠ABC1=90°,有一个角是直角的平行四边形是矩形。,此时点D与点B1重合,AC1⊥BD1,对角线互相垂直的平行四边形是菱形。 [例3](2006广东)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的—个动点,点P不与点O、点A重合。连结CP,过点P作PD交AB于点D。(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且=,求这时点P的坐标。解析:(1)过C作CH⊥OA于H,BE⊥OA于E则△OCH≌△ABE,四边形CHEB为矩形∴OH=AE,CH=BE∵OC=AB=4,∠COA=60°∴CH=,OH=2∴CB=HE=3∴OE=OH+HE=5∵BE=CH=∴B(5,)(2)∵∠COA=60°,△OCP为等腰三角形∴△OCP是等边三角形 ∴OP=OC=4∴P(4,0)即P运动到(4,0)时,△OCP为等腰三角形(3)∵∠CPD=∠OAB=∠COP=60°∴∠OPC+∠DPA=120°又∵∠PDA+∠DPA=120°∴∠OPC=∠PDA∵∠OCP=∠A=60°∴△COP∽△PAD∴∵,AB=4∴BD=∴AD=即∴得OP=1或6∴P点坐标为(1,0)或(6,0) [例4](2007云南省)已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F。请探求DF与AB有何数量关系?写出你所得到的结论并给予证明。解:经探求,结论是:DF=AB证明如下:∵四边形ABCD是矩形,∴∠B=AD∥BC,∴∠DAF=∠AEB。∵DF⊥AE∴∠AFD=∵AE=AD∴ABE≌DFA∴AB=DF[例5](2007北京市)我们知道:有两条边相等的三角形叫做等腰三角形。类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形。(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在中,点分别在上,设相交于点,若,。请你写出图中一个与相等的角,并猜想图中哪个四边形是等对边四边形;(3)在中,如果是不等于的锐角,点分别在上,且。探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论。 解:(1)回答正确的给1分(如平行四边形、等腰梯形等)。(2)答:与相等的角是(或)。四边形是等对边四边形。(3)答:此时存在等对边四边形,是四边形。证法一:如图1,作于点,作交延长线于点。因为,为公共边,所以。所以。因为,,所以。可证。所以。所以四边形是等边四边形。证法二:如图2,以为顶点作,交于点。 因为,为公共边,所以。所以,。所以。因为,,所以。所以。所以。所以。所以四边形是等边四边形。说明:当时,仍成立。只有此证法,只给1分。[例6](07山东滨州)如图1所示,在中,,,为的中点,动点在边上自由移动,动点在边上自由移动。(1)点的移动过程中,是否能成为的等腰三角形?若能,请指出为等腰三角形时动点的位置。若不能,请说明理由。(2)当时,设,,求与之间的函数解析式,写出的取值范围。 (3)在满足(2)中的条件时,若以为圆心的圆与相切(如图2),试探究直线与圆O的位置关系,并证明你的结论。解:如图,(1)点移动的过程中,能成为的等腰三角形。此时点的位置分别是:①是的中点,与重合。②。③与重合,是的中点。(2)在和中,,,。又,。。,,,。(3)与圆O相切。,。。即。又,。。点到和的距离相等。与圆O相切, 点到的距离等于圆O的半径。与圆O相切。[例7](2007乐山)如图,在矩形中,,。直角尺的直角顶点在上滑动时(点与不重合),一直角边经过点,另一直角边交于点。我们知道,结论“”成立。(1)当时,求的长;(2)是否存在这样的点,使的周长等于周长的倍?若存在,求出的长;若不存在,请说明理由。解:(1)在中,由,得,由知,。(2)假设存在满足条件的点,设,则由知,,解得,此时,符合题意。[例8](2006湖南衡阳)观察算式:1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52 用代数式表示这个规律(n为正整数):1+3+5+7+9++(2n-1)=。分析与解答:由以上各等式知,等式左端是从1开始的连续若干个奇数之和,右端是左端奇数个数的平方,由此易得1+3+5+7+…+(2n-1)=n2,填n2。【模拟试题】1.(2006年山东省)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O。给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD。(1)上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形。2.(2006年随州市)如图,矩形ABCD中,M是AD的中点。(1)求证:△ABM≌△DCM;(2)请你探索,当矩形ABCD中的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由。3.如图,在△ABC中,D为BC上一个动点(D点与B、C不重合),且DE∥AC交AB于点E,DF∥AB交AC于点F。(1)试探究,当AD满足什么条件时,四边形AEDF是菱形?并说明理由。(2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF是正方形?请说明理由。 4.如图,AB是⊙O的直径,EF是⊙O的切线,切点是C。点D是EF上一个动点,连接AD。试探索点D运动到什么位置时,AC是∠BAD的平分线,请说明理由。5.(2006年成都市)已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF。(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论。6.(2006广西贺州市)观察图中一列有规律的数,然后在“?”处填上一个合适的数,这个数是.7.(2006广西百色市)如图,A1A2B是直角三角形,且A1A2=A2B=a,A2A3⊥A1B,垂足为A3,A3A4⊥A2B,垂足为A4,A4A5⊥A3B,垂足为A5,……,An+1An+2⊥AnB,垂足为An+2,则线段An+1An+2(n为自然数)的长为()A.B.C.D. 8.(2007成都市)在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点和。(1)求此二次函数的表达式;(2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达式及点的坐标;若不存在,请说明理由;(3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角与的大小(不必证明),并写出此时点的横坐标的取值范围。9.(2007绵阳市)如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为。设⊙M与y轴交于D,抛物线的顶点为E。(1)求m的值及抛物线的解析式;(2)设∠DBC=a,∠CBE=b,求sin(a-b)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由。中考数学压轴题解题技巧解说一、动态:动点、动线4.(浙江嘉兴)CABNM(第24题)如图,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)探究:△ABC的最大面积?二、圆5.(青海)如图10,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长; (3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.CxxyyAOBEDACBCDG图1图26.(湖南张家界)在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D.(1)求点C的坐标和过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.yxOCDBA1-4 7.(潍坊市)如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.OxyNCDEFBMA四、比例比值取值范围8.(怀化)图9是二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.图1图9 9.(湖南长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.BAPxCQOy第26题图 五、探究型10.(内江)如图,抛物线与轴交于两点,与轴交于点.(1)请求出抛物线顶点的坐标(用含的代数式表示),两点的坐标;(2)经探究可知,与的面积比不变,试求出这个比值;(3)是否存在使为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.11.(福建龙岩)如图,抛物线经过的三个顶点,已知轴,点在轴上,点在轴上,且.(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由. ACByx011六、最值类12.(恩施)如图11,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积. 中考压轴题专项训练训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。题型结构及解题方法压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。考查要点常考类型举例题型特征解题方法问题背景研究求坐标或函数解析式,求角度或线段长已知点坐标、解析式或几何图形的部分信息研究坐标、解析式,研究边、角,特殊图形。模型套路调用求面积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关①分段:动点转折分段、图形碰撞分段;②利用动点路程表达线段长;③设计方案表达关系式。坐标系下,所求关系式和坐标相关①利用坐标及横平竖直线段长;②分类:根据线段表达不同分类;③设计方案表达面积或周长。求线段和(差)的最值有定点(线)、不变量或不变关系利用几何模型、几何定理求解,如两点之间线段最短、垂线段最短、三角形三边关系等。套路整合及分类讨论点的存在性点的存在满足某种关系,如满足面积比为9:10①抓定量,找特征;②确定分类;.③根据几何特征或函数特征建等式。图形的存在性特殊三角形、特殊四边形的存在性①分析动点、定点或不变关系(如平行);②根据特殊图形的判定、性质,确定分类;根据几何特征或函数特征建等式。三角形相似、全等的存在性①找定点,分析目标三角形边角关系;②根据判定、对应关系确定分类;③根据几何特征建等式求解。 答题规范动作1.试卷上探索思路、在演草纸上演草。2.合理规划答题卡的答题区域:两栏书写,先左后右。作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。3.作答要求:框架明晰,结论突出,过程简洁。23题作答更加注重结论,不同类型的作答要点:几何推理环节,要突出几何特征及数量关系表达,简化证明过程;面积问题,要突出面积表达的方案和结论;几何最值问题,直接确定最值存在状态,再进行求解;存在性问题,要明确分类,突出总结。4.20分钟内完成。实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称:中考数学难点突破之动点1、图形运动产生的面积问题2、存在性问题3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)3、中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练) 一、图形运动产生的面积问题一、知识点睛1.研究_基本_图形2.分析运动状态:①由起点、终点确定t的范围;②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.3.分段画图,选择适当方法表达面积.二、精讲精练1.已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.1题图 1.如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.(1)求M,N的坐标.(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围. 3.我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心。重心有很多美妙的性质,如在关线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题。请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG.S△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值。 解:(1)证明:如答图1所示,连接CO并延长,交AB于点E,∵点O是△ABC的重心,∴CE是中线,点E是AB的中点。∴DE是中位线。∴DE∥AC,且DE=AC。∵DE∥AC,∴△AOC∽△DOE。∴。∵AD=AO+OD,∴。(2)答:点O是△ABC的重心。证明如下:如答图2,作△ABC的中线CE,与AD交于点Q, 则点Q为△ABC的重心。由(1)可知,  ,而,∴点Q与点O重合(是同一个点)。∴点O是△ABC的重心。(3)如答图3所示,连接DG.设S△GOD=S,由(1)知,即OA=2OD,∴S△AOG=2S,S△AGD=S△GOD+S△AGO=3S。为简便起见,不妨设AG=1,BG=x,则S△BGD=3xS.∴S△ABD=S△AGD+S△BGD=3S+3xS=(3x+3)S。∴S△ABC=2S△ABD=(6x+6)S。设OH=k•OG,由S△AGO=2S,得S△AOH=2kS,∴S△AGH=S△AGO+S△AOH=(2k+2)S。∴S四边形BCHG=S△ABC﹣S△AGH=(6x+6)S﹣(2k+2)S=(6x﹣2k+4)S。∴ ①。 如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE。∵OF∥BC,∴。∴OF=CD=BC。∵GE∥BC,∴。∴。∴,∴。∵OF∥GE,∴。∴,即。∴,代入①式得:。∴当x=时,有最大值,最大值为。(1)如答图1,作出中位线DE,证明△AOC∽△DOE,可以证明结论。(2)如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,,而已知,故点O与点Q重合,即点O为△ABC的重心。(3)如答图3,利用图形的面积关系,以及相似线段间的比例关系,求出的表达式,这是一个二次函数,利用二次函数的性质求出其最大值。 二、二次函数中的存在性问题一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.二、精讲精练1.如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点.若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标. 1.抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标. 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;(2)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N.是否存在点M,使△AMN与△ACD相似?若存在,求出点M的坐标;若不存在,说明理由. 三、二次函数与几何综合一、知识点睛“二次函数与几何综合”思考流程:关键点坐标几何特征转线段长几何图形函数表达式整合信息时,下面两点可为我们提供便利:①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.二、精讲精练1.如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由. 1.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,点F在抛物线上,且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.2.如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值. 窗体底端4.如图,点P是直线:上的点,过点P的另一条直线交抛物线于A、B两点.(1)若直线的解析式为,求A、B两点的坐标;(2)①若点P的坐标为(-2,),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.(3)设直线交轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标. 5.如图1,抛物线y=nx2-11nx+24n(n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_),点C的坐标为(_);(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.COAyxBCOAyxDBMNl图1图2 附:参考答案一、图形运动产生的面积问题1.(1)当t=时,四边形MNQP恰为矩形.此时,该矩形的面积为平方厘米. (2)当0<t≤1时,;当1<t≤2时,;当2<t<3时,2.(1)M(4,2)N(6,0)(2)当0≤t≤1时,;当1<t≤4时,;当4<t≤5时,;当5<t≤6时,;当6<t≤7时,3.解:(1)证明:如图1,连结CO并延长交AB于点P,连结PD。∵点O是△ABC的重心,∴P是AB的中点,D是BC的中点,PD是△ABC的中位线,AC=2PD,AC//PD,∠DPO=∠ACO,∠PDO=∠CAO,△OPD∽△CA,==,=,∴;(2)点O是是△ABC的重心。证明:如图2,作△ABC的中线CP,与AB边交于点P,与△ABC的另一条中线AD交于点Q,则点Q是△ABC的重心,根据(1)中的证明可知,而,点Q与点O重合(是同一个点),所以点O是△ABC的重心; (3)如图3,连结CO交AB于F,连结BO交AC于E,过点O分别作AB、AC的平行线OM、ON,分别与AC、AB交于点M、N,∵点O是△ABC的重心,∴=,=,∵在△ABE中,OM//AB,==,OM=AB,在△ACF中,ON//AC,==,ON=AC,在△AGH中,OM//AH,=,在△ACH中,ON//AH,=,∴+=+=1,+=1,+=3,令=m,=n,m=3-n,∵=, ===-1=mn-1=(3-n)n-1=-n2+3n-1=-(n-)2+,∴当=n=,GH//BC时,有最大值。附:或的另外两种证明方法的作图。方法一:分别过点B、C作AD的平行线BE、CF,分别交直线GH于点E、F。方法二:分别过点B、C、A、D作直线GH的垂线,垂足分别为E、F、N、M。二、二次函数中的存在性问题1.解:由题意,设OA=m,则OB=2m;当∠BAP=90°时,△BAP∽△AOB或△BAP∽△BOA;①若△BAP∽△AOB,如图1,可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m),代入,可知,②若△BAP∽△BOA,如图2, 可知△PMA∽△AOB,相似比为1:2;则P2(2m,),代入,可知,当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA;①若△ABP∽△AOB,如图3,可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m),代入,可知,②若△ABP∽△BOA,如图4,可知△PMB∽△BOA,相似比为1:2;则P4(m,),代入,可知,2.解:(1)由抛物线解析式可得B点坐标(1,3).要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度.过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F.则可证△DCG≌△DEF.则DG=DF,∴矩形DGQF为正方形.则∠DQG=45°,则△BCQ为等腰直角三角形.∴CQ=BC=3,此时,Q点坐标为(4,0)可得BQ解析式为y=-x+4.(2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可.而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论.①当∠DCE=30°时,a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K.则可证△DCH∽△DEK.则,在矩形DHQK中,DK=HQ,则.在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,∴CQ=,此时,Q点坐标为(1+,0)则P点横坐标为1+.代入可得纵坐标.∴P(1+,).b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称. 由对称性可得此时点P坐标为(1-,)①当∠DCE=60°时,a)过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N.则可证△DCM∽△DEN.则,在矩形DMQN中,DN=MQ,则.在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中,∴CQ=BC=,此时,Q点坐标为(1+,0),则P点横坐标为1+.代入可得纵坐标.∴P(1+,).b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P坐标为(1-,)综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,).3.解:(1)∵AB=BC=10,OB=8∴在Rt△OAB中,OA=6∴A(6,0)将A(6,0),B(0,-8)代入抛物线表达式,得,(2)存在:如果△AMN与△ACD相似,则或设M(00,∴a=1∴抛物线的解析式为:(2)当AB为平行四边形的边时,则BA∥EF,并且EF=BA=4由于对称轴为直线x=1,∴点E的横坐标为1,∴点F的横坐标为5或者3将x=5代入得y=12,∴F(5,12).将x=-3代入得y=12,∴F(-3,12).当AB为平行四边形的对角线时,点F即为点D,∴F(1,4).综上所述,点F的坐标为(5,12),(3,12)或(1,4).3、解:(1)对于,当y=0,x=2;当x=8时,y=.∴A点坐标为(2,0),B点坐标为由抛物线经过A、B两点,得 解得(2)设直线与y轴交于点M当x=0时,y=.∴OM=.∵点A的坐标为(2,0),∴OA=2,∴AM=∴OM:OA:AM=3:4:5.由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM∽△PED.∴DE:PE:PD=3:4:5∵点P是直线AB上方的抛物线上一动点,∴PD=∴由题意知:4.(1)A(,),B(1,1);(2)①A1(-1,1),A2(-3,9);②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(,),A(,),由PA=PB可证得△PAG≌△BAH,即得AG=AH,PG=BH,则B(,),将点B坐标代入抛物线,得,根据△的值始终大于0即可作出判断;(3)(,).试题分析:(1)由题意联立方程组即可求得A、B两点的坐标;(2)①根据函数图象上的点的坐标的特征结合PA=AB即可求得A点的坐标;②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(,),A(, ),由PA=PB可证得△PAG≌△BAH,即得AG=AH,PG=BH,则B(,),将点B坐标代入抛物线,得,根据△的值始终大于0即可作出判断;(3)设直线:交y轴于D,设A(,),B(,).过A、B两点分别作AG、BH垂直轴于G、H.由△AOB的外心在AB上可得∠AOB=90°,由△AGO∽△OHB,得,则,联立得,依题意得、是方程的两根,即可求得b的值,设P(,),过点P作PQ⊥轴于Q,在Rt△PDQ中,根据勾股定理列方程求解即可.(1)依题意,得解得,∴A(,),B(1,1);(2)①A1(-1,1),A2(-3,9);②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(,),A(,),∵PA=PB,∴△PAG≌△BAH,∴AG=AH,PG=BH,∴B(,),将点B坐标代入抛物线,得,∵△=∴无论为何值时,关于的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A;(3)设直线:交y轴于D,设A(,),B(,).过A、B两点分别作AG、BH垂直轴于G、H. ∵△AOB的外心在AB上,∴∠AOB=90°,由△AGO∽△OHB,得,∴.联立得,依题意得、是方程的两根,∴,∴,即D(0,1).∵∠BPC=∠OCP,∴DP=DC=3.设P(,),过点P作PQ⊥轴于Q, 在Rt△PDQ中,,∴.解得(舍去),,∴P(,).∵PN平分∠MNQ,∴PT=NT,∴.5.解:(1)B(3,0),C(8,0)………………3分(2)①作AE⊥OC,垂足为点E∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4-3=1又∵∠BAC=90°,∴△ACE∽△BAE,∴=∴AE2=BE·CE=1×4,∴AE=2………………4分∴点A的坐标为(4,2)………………5分把点A的坐标(4,2)代入抛物线y=nx2-11nx+24n,得n=-∴抛物线的解析式为y=-x2+x-12………………7分②∵点M的横坐标为m,且点M在①中的抛物线上 ∴点M的坐标为(m,-m2+m-12),由①知,点D的坐标为(4,-2),则C、D两点的坐标求直线CD的解析式为y=x-4∴点N的坐标为(m,m-4)∴MN=(-m2+m-12)-(m-4)=-m2+5m-8…………9分∴S四边形AMCN=S△AMN+S△CMN=MN·CE=(-m2+5m-8)×4=-(m-5)2+9……………11分∴当m=5时,S四边形AMCN=9……………12分中考压轴题专项训练训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。题型结构及解题方法压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。考查要点常考类型举例题型特征解题方法问题背景研究求坐标或函数解析式,求角度或线段长已知点坐标、解析式或几何图形的部分信息研究坐标、解析式,研究边、角,特殊图形。模型套路调用求面积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关①分段:动点转折分段、图形碰撞分段;②利用动点路程表达线段长;③设计方案表达关系式。坐标系下,所求关系式和坐标相关①利用坐标及横平竖直线段长;②分类:根据线段表达不同分类;③设计方案表达面积或周长。求线段和(差)的最值有定点(线)、不变量或不变关系利用几何模型、几何定理求解,如两点之间线段最短、垂线段最短、三角形三边关系等。 套路整合及分类讨论点的存在性点的存在满足某种关系,如满足面积比为9:10①抓定量,找特征;②确定分类;.③根据几何特征或函数特征建等式。图形的存在性特殊三角形、特殊四边形的存在性①分析动点、定点或不变关系(如平行);②根据特殊图形的判定、性质,确定分类;根据几何特征或函数特征建等式。三角形相似、全等的存在性①找定点,分析目标三角形边角关系;②根据判定、对应关系确定分类;③根据几何特征建等式求解。答题规范动作1.试卷上探索思路、在演草纸上演草。2.合理规划答题卡的答题区域:两栏书写,先左后右。作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。3.作答要求:框架明晰,结论突出,过程简洁。23题作答更加注重结论,不同类型的作答要点:几何推理环节,要突出几何特征及数量关系表达,简化证明过程;面积问题,要突出面积表达的方案和结论;几何最值问题,直接确定最值存在状态,再进行求解;存在性问题,要明确分类,突出总结。4.20分钟内完成。实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称:中考数学难点突破之动点1、图形运动产生的面积问题2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)3、中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练)一、图形运动产生的面积问题一、知识点睛1.研究_基本_图形2.分析运动状态:①由起点、终点确定t的范围;②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.3.分段画图,选择适当方法表达面积.二、精讲精练1.已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围. 1题图1.如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.(1)求M,N的坐标.(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围. 3.我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心。重心有很多美妙的性质,如在关线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题。请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG.S△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值。 解:(1)证明:如答图1所示,连接CO并延长,交AB于点E,∵点O是△ABC的重心,∴CE是中线,点E是AB的中点。 ∴DE是中位线。∴DE∥AC,且DE=AC。∵DE∥AC,∴△AOC∽△DOE。∴。∵AD=AO+OD,∴。(2)答:点O是△ABC的重心。证明如下:如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心。由(1)可知,  ,而,∴点Q与点O重合(是同一个点)。∴点O是△ABC的重心。(3)如答图3所示,连接DG. 设S△GOD=S,由(1)知,即OA=2OD,∴S△AOG=2S,S△AGD=S△GOD+S△AGO=3S。为简便起见,不妨设AG=1,BG=x,则S△BGD=3xS.∴S△ABD=S△AGD+S△BGD=3S+3xS=(3x+3)S。∴S△ABC=2S△ABD=(6x+6)S。设OH=k•OG,由S△AGO=2S,得S△AOH=2kS,∴S△AGH=S△AGO+S△AOH=(2k+2)S。∴S四边形BCHG=S△ABC﹣S△AGH=(6x+6)S﹣(2k+2)S=(6x﹣2k+4)S。∴ ①。如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE。∵OF∥BC,∴。∴OF=CD=BC。∵GE∥BC,∴。∴。∴,∴。∵OF∥GE,∴。∴,即。∴,代入①式得:。∴当x=时,有最大值,最大值为。(1)如答图1,作出中位线DE,证明△AOC∽△DOE,可以证明结论。 (2)如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,,而已知,故点O与点Q重合,即点O为△ABC的重心。(3)如答图3,利用图形的面积关系,以及相似线段间的比例关系,求出的表达式,这是一个二次函数,利用二次函数的性质求出其最大值。二、二次函数中的存在性问题一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.二、精讲精练1.如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点.若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标. 1.抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标. 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;(2)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N.是否存在点M,使△AMN与△ACD相似?若存在,求出点M的坐标;若不存在,说明理由. 三、二次函数与几何综合一、知识点睛“二次函数与几何综合”思考流程:关键点坐标几何特征转线段长几何图形函数表达式整合信息时,下面两点可为我们提供便利:①研究函数表达式.二次函数关注四点一线,一次函数关注k、b; ②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.二、精讲精练1.如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,点F在抛物线上,且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.3.如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,点P的横坐标为 x,求l关于x的函数关系式,并求出l的最大值.窗体底端4.如图,点P是直线:上的点,过点P的另一条直线交抛物线于A、B两点.(1)若直线的解析式为,求A、B两点的坐标;(2)①若点P的坐标为(-2,),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB 成立.(3)设直线交轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标. 5.如图1,抛物线y=nx2-11nx+24n(n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_),点C的坐标为(_);(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.COAyxBCOAyxDBMNl图1图2 附:参考答案一、图形运动产生的面积问题1.(1)当t=时,四边形MNQP恰为矩形.此时,该矩形的面积为平方厘米.(2)当0<t≤1时,;当1<t≤2时,;当2<t<3时,2.(1)M(4,2)N(6,0)(2)当0≤t≤1时,;当1<t≤4时,;当4<t≤5时,;当5<t≤6时,;当6<t≤7时,3.解:(1)证明:如图1,连结CO并延长交AB于点P,连结PD。∵点O是△ABC的重心,∴P是AB的中点,D是BC的中点,PD是△ABC的中位线,AC=2PD,AC//PD,∠DPO=∠ACO,∠PDO=∠CAO, △OPD∽△CA,==,=,∴;(2)点O是是△ABC的重心。证明:如图2,作△ABC的中线CP,与AB边交于点P,与△ABC的另一条中线AD交于点Q,则点Q是△ABC的重心,根据(1)中的证明可知,而,点Q与点O重合(是同一个点),所以点O是△ABC的重心;(3)如图3,连结CO交AB于F,连结BO交AC于E,过点O分别作AB、AC的平行线OM、ON,分别与AC、AB交于点M、N,∵点O是△ABC的重心,∴=,=,∵在△ABE中,OM//AB,==,OM=AB,在△ACF中,ON//AC,==,ON=AC,在△AGH中,OM//AH,=,在△ACH中,ON//AH,=,∴+=+=1,+=1,+=3, 令=m,=n,m=3-n,∵=,===-1=mn-1=(3-n)n-1=-n2+3n-1=-(n-)2+,∴当=n=,GH//BC时,有最大值。附:或的另外两种证明方法的作图。方法一:分别过点B、C作AD的平行线BE、CF,分别交直线GH于点E、F。方法二:分别过点B、C、A、D作直线GH的垂线,垂足分别为E、F、N、M。二、二次函数中的存在性问题1.解:由题意,设OA=m,则OB=2m;当∠BAP=90°时, △BAP∽△AOB或△BAP∽△BOA;①若△BAP∽△AOB,如图1,可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m),代入,可知,②若△BAP∽△BOA,如图2,可知△PMA∽△AOB,相似比为1:2;则P2(2m,),代入,可知,当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA;③若△ABP∽△AOB,如图3,可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m),代入,可知,④若△ABP∽△BOA,如图4,可知△PMB∽△BOA,相似比为1:2;则P4(m,),代入,可知,2.解:(1)由抛物线解析式可得B点坐标(1,3).要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度.过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F.则可证△DCG≌△DEF.则DG=DF,∴矩形DGQF为正方形.则∠DQG=45°,则△BCQ为等腰直角三角形.∴CQ=BC=3,此时,Q点坐标为(4,0)可得BQ解析式为y=-x+4.(2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可.而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论.①当∠DCE=30°时,a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K.则可证△DCH∽△DEK.则,在矩形DHQK中,DK=HQ,则.在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,∴CQ=,此时,Q点坐标为(1+ ,0)则P点横坐标为1+.代入可得纵坐标.∴P(1+,).b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P坐标为(1-,)①当∠DCE=60°时,a)过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N.则可证△DCM∽△DEN.则,在矩形DMQN中,DN=MQ,则.在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中,∴CQ=BC=,此时,Q点坐标为(1+,0),则P点横坐标为1+.代入可得纵坐标.∴P(1+,).b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P坐标为(1-,)综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,).3.解:(1)∵AB=BC=10,OB=8∴在Rt△OAB中,OA=6∴A(6,0)将A(6,0),B(0,-8)代入抛物线表达式,得,(2)存在:如果△AMN与△ACD相似,则或设M(00,∴a=1∴抛物线的解析式为:(2)当AB为平行四边形的边时,则BA∥EF,并且EF=BA=4由于对称轴为直线x=1,∴点E的横坐标为1,∴点F的横坐标为5或者3将x=5代入得y=12,∴F(5,12).将x=-3代入得y=12,∴F(-3,12).当AB为平行四边形的对角线时,点F即为点D,∴F(1,4).综上所述,点F的坐标为(5,12),(3,12)或(1,4). 3、解:(1)对于,当y=0,x=2;当x=8时,y=.∴A点坐标为(2,0),B点坐标为由抛物线经过A、B两点,得解得(2)设直线与y轴交于点M当x=0时,y=.∴OM=.∵点A的坐标为(2,0),∴OA=2,∴AM=∴OM:OA:AM=3:4:5.由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM∽△PED.∴DE:PE:PD=3:4:5∵点P是直线AB上方的抛物线上一动点,∴PD=∴由题意知:4.(1)A(,),B(1,1);(2)①A1(-1,1),A2(-3,9);②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(,),A(,),由PA=PB可证得△PAG≌△BAH,即得AG=AH,PG=BH,则B(,),将点B坐标代入抛物线,得,根据△的值始终大于0即可作出判断;(3)(,). 试题分析:(1)由题意联立方程组即可求得A、B两点的坐标;(2)①根据函数图象上的点的坐标的特征结合PA=AB即可求得A点的坐标;②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(,),A(,),由PA=PB可证得△PAG≌△BAH,即得AG=AH,PG=BH,则B(,),将点B坐标代入抛物线,得,根据△的值始终大于0即可作出判断;(3)设直线:交y轴于D,设A(,),B(,).过A、B两点分别作AG、BH垂直轴于G、H.由△AOB的外心在AB上可得∠AOB=90°,由△AGO∽△OHB,得,则,联立得,依题意得、是方程的两根,即可求得b的值,设P(,),过点P作PQ⊥轴于Q,在Rt△PDQ中,根据勾股定理列方程求解即可.(1)依题意,得解得,∴A(,),B(1,1);(2)①A1(-1,1),A2(-3,9);②过点P、B分别作过点A且平行于轴的直线的垂线,垂足分别为G、H.设P(,),A(,),∵PA=PB,∴△PAG≌△BAH,∴AG=AH,PG=BH,∴B(,),将点B坐标代入抛物线,得, ∵△=∴无论为何值时,关于的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A;(3)设直线:交y轴于D,设A(,),B(,).过A、B两点分别作AG、BH垂直轴于G、H.∵△AOB的外心在AB上,∴∠AOB=90°,由△AGO∽△OHB,得,∴.联立得,依题意得、是方程的两根,∴,∴,即D(0,1).∵∠BPC=∠OCP,∴DP=DC=3.设P(,),过点P作PQ⊥轴于Q, 在Rt△PDQ中,,∴.解得(舍去),,∴P(,).∵PN平分∠MNQ,∴PT=NT,∴.5.解:(1)B(3,0),C(8,0)………………3分(2)①作AE⊥OC,垂足为点E∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4-3=1又∵∠BAC=90°,∴△ACE∽△BAE,∴=∴AE2=BE·CE=1×4,∴AE=2………………4分∴点A的坐标为(4,2)………………5分把点A的坐标(4,2)代入抛物线y=nx2-11nx+24n,得n=-∴抛物线的解析式为y=-x2+x-12………………7分②∵点M的横坐标为m,且点M在①中的抛物线上 ∴点M的坐标为(m,-m2+m-12),由①知,点D的坐标为(4,-2),则C、D两点的坐标求直线CD的解析式为y=x-4∴点N的坐标为(m,m-4)∴MN=(-m2+m-12)-(m-4)=-m2+5m-8…………9分∴S四边形AMCN=S△AMN+S△CMN=MN·CE=(-m2+5m-8)×4=-(m-5)2+9……………11分∴当m=5时,S四边形AMCN=9……………12分15、(2009年烟台市)26.(本题满分14分)如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.(1)求抛物线对应的函数表达式;(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;OBxyAMC1(第26题图)(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论).26.(本题满分14分) yxEDNOACMPN1F(第26题图)解:(1)根据题意,得2分解得抛物线对应的函数表达式为.3分(2)存在.在中,令,得.令,得,.,,.又,顶点.5分容易求得直线的表达式是.在中,令,得.,.6分在中,令,得..,四边形为平行四边形,此时.8分(3)是等腰直角三角形.理由:在中,令,得,令,得.直线与坐标轴的交点是,.,.9分又点,..10分由图知,.11分,且.是等腰直角三角形.12分(4)当点是直线上任意一点时,(3)中的结论成立.14分16、(2009年山东省日照)24.(本题满分10分) 已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)DFBACE第24题图③FBADCEG第24题图②FBADCEG第24题图①24.(本题满分10分)解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=CG.…………………………4分证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………………………5分在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分 在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………………………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……………………4分在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………………………5分∴.在Rt△MFE与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE≌△CBE.∴.…………………………………………………6分∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.…………7分∴△MEC为直角三角形.∵MG=CG,∴EG=MC.∴.………………………………8分(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分17、(2009年潍坊市)24.(本小题满分12分)如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式; (2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.OxyNCDEFBMA24.(本小题满分12分)解:(1)圆心在坐标原点,圆的半径为1,点的坐标分别为抛物线与直线交于点,且分别与圆相切于点和点,.2分点在抛物线上,将的坐标代入,得:解之,得:抛物线的解析式为:.4分(2)抛物线的对称轴为,OxyNCDEFBMAP.6分连结,,,又, ,.8分(3)点在抛物线上.9分设过点的直线为:,将点的坐标代入,得:,直线为:.10分过点作圆的切线与轴平行,点的纵坐标为,将代入,得:.点的坐标为,11分当时,,所以,点在抛物线上.12分说明:解答题各小题中只给出了1种解法,其它解法只要步骤合理、解答正确均应得到相应的分数.18、(2009年山东临沂市)26.(本小题满分13分)如图,抛物线经过三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.OxyABC41(第26题图)26.解:(1)该抛物线过点,可设该抛物线的解析式为. 将,代入,得解得此抛物线的解析式为.(3分)(2)存在.(4分)如图,设点的横坐标为,OxyABC41(第26题图)DPME则点的纵坐标为,当时,,.又,①当时,,即.解得(舍去),.(6分)②当时,,即.解得,(均不合题意,舍去)当时,.(7分)类似地可求出当时,.(8分)当时,.综上所述,符合条件的点为或或.(9分)(3)如图,设点的横坐标为,则点的纵坐标为.过作轴的平行线交于.由题意可求得直线的解析式为.(10分) 点的坐标为..(11分).当时,面积最大..(13分)19、(2009年山东省济宁市)26.(12分)在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(第26题)OABCMN(2)旋转过程中,当和平行时,求正方形旋转的度数;(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.26.(1)解:∵点第一次落在直线上时停止旋转, ∴旋转了.∴在旋转过程中所扫过的面积为.……………4分(2)解:∵∥,∴,.∴.∴.又∵,∴.又∵,,∴.∴.∴.∴旋转过程中,当和平行时,正方形旋转的度数为.……………………………………………8分(3)答:值无变化.证明:延长交轴于点,则,,∴.又∵,.∴.∴.又∵,,∴.∴.∴,∴.(第26题)OABCMN∴在旋转正方形的过程中,值无变化.……………12分 20、(2009年四川遂宁市)25.如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.25.⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C的横坐标为4,且过点(0,)∴y=a(x-4)2+k………………①又∵对称轴为直线x=4,图象在x轴上截得的线段长为6∴A(1,0),B(7,0)∴0=9a+k………………②由①②解得a=,k=∴二次函数的解析式为:y=(x-4)2-⑵∵点A、B关于直线x=4对称∴PA=PB∴PA+PD=PB+PD≥DB∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P设直线x=4与x轴交于点M∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO∴△BPM∽△BDO∴∴∴点P的坐标为(4,)⑶由⑴知点C(4,),又∵AM=3,∴在Rt△AMC中,cot∠ACM=,∴∠ACM=60o,∵AC=BC,∴∠ACB=120o①当点Q在x轴上方时,过Q作QN⊥x轴于N如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120o,则∠QBN=60o∴QN=3,BN=3,ON=10,此时点Q(10,),如果AB=AQ,由对称性知Q(-2,)②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,),经检验,点(10,)与(-2,)都在抛物线上综上所述,存在这样的点Q,使△QAB∽△ABC点Q的坐标为(10,)或(-2,)或(4,). 21、(2009年四川南充市)21.如图9,已知正比例函数和反比例函数的图象都经过点.(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.yxOCDBA33621.解:(1)设正比例函数的解析式为,因为的图象过点,所以,解得.这个正比例函数的解析式为.(1分)设反比例函数的解析式为.因为的图象过点,所以,解得.这个反比例函数的解析式为.(2分) (2)因为点在的图象上,所以,则点.(3分)设一次函数解析式为.因为的图象是由平移得到的,所以,即.又因为的图象过点,所以,解得,一次函数的解析式为.(4分)(3)因为的图象交轴于点,所以的坐标为.设二次函数的解析式为.因为的图象过点、、和,所以(5分)解得yxOCDBA336E这个二次函数的解析式为.(6分)(4)交轴于点,点的坐标是,如图所示,. 假设存在点,使.四边形的顶点只能在轴上方,,.,.(7分)在二次函数的图象上,.解得或.当时,点与点重合,这时不是四边形,故舍去,点的坐标为.(8分)22、(2009年四川凉山州)26.如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;yxBAOD(第26题)(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标. 26.解:(1)已知抛物线经过,解得所求抛物线的解析式为.2分(2),,可得旋转后点的坐标为3分当时,由得,可知抛物线过点将原抛物线沿轴向下平移1个单位后过点.平移后的抛物线解析式为:.5分(3)点在上,可设点坐标为yxCBAONDB1D1图①将配方得,其对称轴为.6分①当时,如图①,此时yxCBAODB1D1图②N点的坐标为.8分②当时,如图② 同理可得此时点的坐标为.综上,点的坐标为或.10分23、(2009年武汉市)25.(本题满分12分)如图,抛物线经过、两点,与轴交于另一点.(1)求抛物线的解析式;(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;yxOABC(3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.25.解:(1)抛物线经过,两点,解得抛物线的解析式为.yxOABCDE(2)点在抛物线上,,即,或.点在第一象限,点的坐标为.由(1)知. 设点关于直线的对称点为点.,,且,,点在轴上,且.,.即点关于直线对称的点的坐标为(0,1).(3)方法一:作于,于.yxOABCDEPF由(1)有:,.,且.,.,,,.设,则,,.点在抛物线上,,(舍去)或,.yxOABCDPQGH方法二:过点作的垂线交直线于点,过点作轴于.过点作于..,又,.,,. 由(2)知,.,直线的解析式为.解方程组得点的坐标为.24、(2009年鄂州市)27.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO(1)试比较EO、EC的大小,并说明理由(2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。27、(1)EO>EC,理由如下:由折叠知,EO=EF,在Rt△EFC中,EF为斜边,∴EF>EC,故EO>EC…2分(2)m为定值 ∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO―EC)=CO·(EO―EC)S四边形CMNO=CM·CO=|CE―EO|·CO=(EO―EC)·CO∴……………………………………………………4分(3)∵CO=1,∴EF=EO=∴cos∠FEC=∴∠FEC=60°,∴∴△EFQ为等边三角形,…………………………………………5分作QI⊥EO于I,EI=,IQ=∴IO=∴Q点坐标为……………………………………6分∵抛物线y=mx2+bx+c过点C(0,1),Q,m=1∴可求得,c=1∴抛物线解析式为……………………………………7分(4)由(3),当时,<AB∴P点坐标为…………………8分∴BP=AO方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下:①时,∴K点坐标为或②时,∴K点坐标为或…………10分 故直线KP与y轴交点T的坐标为…………………………………………12分方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°,过P作PR⊥y轴于R,则∠RTP=60°或30°①当∠RTP=30°时,②当∠RTP=60°时,∴……………………………12分25、(2009年湖北省黄石市)24、(本题满分9分)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为。②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法)(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。24、解:(1)①CF⊥BD,CF=BD②成立,理由如下:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF又BA=CAAD=AF∴△BAD≌△CAF∴CF=BD∠ACF=∠ACB=45°∴∠BCF=90°∴CF⊥BD……(1分)(2)当∠ACB=45°时可得CF⊥BC,理由如下:如图:过点A作AC的垂线与CB所在直线交于G则∵∠ACB=45°∴AG=AC∠AGC=∠ACG=45° ∵AG=ACAD=AF………(1分)∴△GAD≌△CAF(SAS)∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90°∴CF⊥BC…………(2分)(3)如图:作AQBC于Q∵∠ACB=45°AC=4∴CQ=AQ=4∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°∴△ADQ∽△DPC…(1分)∴=设CD为x(0<x<3)则DQ=CQ-CD=4-x则=…………(1分)∴PC=(-x2+4x)=-(x-2)2+1≥1当x=2时,PC最长,此时PC=1………(1分)26、(2009年湖北省孝感市)25.(本题满分12分)如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=(0<k2<|k1|)于E、F两点.(1)图1中,四边形PEOF的面积S1=▲(用含k1、k2的式子表示);(3分)(2)图2中,设P点坐标为(-4,3).①判断EF与AB的位置关系,并证明你的结论;(4分)②记,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.(5分)25.解:(1);…………………………………3分 (2)①EF∥AB.……………………………………4分证明:如图,由题意可得A(–4,0),B(0,3),,.∴PA=3,PE=,PB=4,PF=.∴,∴.…………………………6分又∵∠APB=∠EPF.∴△APB∽△EPF,∴∠PAB=∠PEF.∴EF∥AB.……………………………7分②S2没有最小值,理由如下:过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.由上知M(0,),N(,0),Q(,).………………8分而S△EFQ=S△PEF,∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN===.…………………………10分当时,S2的值随k2的增大而增大,而0<k2<12.……………11分∴0<S2<24,s2没有最小值.……………………………12分说明:1.证明AB∥EF时,还可利用以下三种方法.方法一:分别求出经过A、B两点和经过E、F两点的直线解析式,利用这两个解析式中x的系数相等来证明AB∥EF;方法二:利用=来证明AB∥EF;方法三:连接AF、BE,利用S△AEF=S△BFE得到点A、点B到直线EF的距离相等,再由A、B两点在直线EF同侧可得到AB∥EF.2.求S2的值时,还可进行如下变形:S2=S△PEF-S△OEF=S△PEF-(S四边形PEOF-S△PEF)=2S△PEF-S四边形PEOF,再利用第(1)题中的结论.中考数学压轴题38.(2015三明)如图,已知点A是双曲线 在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为(  )A.B.C.D.【答案】B.【解析】试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:,∴点A的坐标为(,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:,∴点B的坐标为(m,),又∵,∴,∴,又∵m<0,n>0,∴,∴,故选B.考点:反比例函数图象上点的坐标特征.39.(2015乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数的图象过点C.当以CD为边的正方形的面积为时,k的值是(  )A.2B.3C.5D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.40.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数的图象经过A,B两点,则菱形ABCD的面积为(  )A.2B.4C.D.【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=,S菱形ABCD=底×高=×2=,故选D. 考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.41.(2015临沂)在平面直角坐标系中,直线与反比例函数的图象有唯一公共点,若直线与反比例函数的图象有2个公共点,则b的取值范围是(  )A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣2【答案】C.考点:反比例函数与一次函数的交点问题.42.(2015滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB的大小的变化趋势为(  ) A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题.二、填空题43.(2017云南省,第6题,3分)已知点A(a,b)在双曲线上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.【答案】y=﹣5x+5或y=﹣x+1. 【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解析】∵点A(a,b)在双曲线上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得:,解得:,∴y=﹣5x+5;②当a=5,b=1时,由题意,得:,解得:,∴y=﹣x+1.则所求解析式为y=﹣5x+5或y=﹣x+1.故答案为:y=﹣5x+5或y=﹣x+1.点睛:本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b的值是解题的关键.考点:反比例函数图象上点的坐标特征;分类讨论.44.(2017内蒙古通辽市,第17题,3分)如图,直线与x,y轴分别交于点A,B,与反比例函数的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为.【答案】(﹣3,).【分析】过C作CE⊥x轴于E,求得A(﹣3,0),B(0,﹣ ),解直角三角形得到∠OAB=30°,求得∠CAE=30°,设D(﹣3,),得到AD=,AC=,于是得到C(,),列方程即可得到结论.【解析】过C作CE⊥x轴于E,∵直线与x,y轴分别交于点A,B,∴A(﹣3,0),B(0,﹣),∴tan∠OAB==,∴∠OAB=30°,∴∠CAE=30°,设D(﹣3,),∵AD⊥x轴,∴AD=,∵AD=AC,∴AC=,∴CE=,AE=,∴C(,),∵C在反比例函数的图象上,∴()•()=k,∴k=,∴D(﹣3,),故答案为:(﹣3,).点睛:本题考查了反比例函数与一次函数的交点问题,解直角三角形,反比例函数图象上点的坐标特征,正确的点A、B、C的坐标解题的关键.考点:反比例函数与一次函数的交点问题.45.(2017四川省成都市,第24题,4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P(,),称为点P的“倒影点”,直线上有两点A、B,它们的倒影点A′,B′均在反比例函数的图象上,若AB=,则k=.【答案】. 【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数的图象上,∴,解得:k=.故答案为:.点睛:本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.46.(2017山东省日照市,第16题,4分)如图,在平面直角坐标系中,经过点A的双曲线(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN= ,OM=AN=,求出B(+,﹣),得出方程(+)•(﹣)=k,解方程即可.点睛:本题考查了坐标与图形性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识;本题综合性强,有一定难度.考点:反比例函数图象上点的坐标特征;综合题.47.(2017江苏省南通市,第18题,3分)如图,四边形OABC是平行四边形,点C在x轴上,反比例函数(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为. 【答案】(8,).【分析】先根据点A(5,12),求得反比例函数的解析式为,可设D(m,),BC的解析式为y=x+b,把D(m,)代入,可得b=﹣m,进而得到BC的解析式为y=x+﹣m,据此可得OC=m﹣=AB,过D作DE⊥AB于E,过A作AF⊥OC于F,根据△DEB∽△AFO,可得DB=13﹣,最后根据AB=BD,得到方程m﹣=13﹣,进而求得D的坐标.【解析】∵反比例函数(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为,设D(m,),由题可得OA的解析式为y=x,AO∥BC,∴可设BC的解析式为y=x+b,把D(m,)代入,可得m+b=,∴b=﹣m,∴BC的解析式为y=x+﹣m,令y=0,则x=m﹣,即OC=m﹣,∴平行四边形ABCO中,AB=m﹣,如图所示,过D作DE⊥AB于E,过A作AF⊥OC于F,则△DEB∽△AFO,∴,而AF=12,DE=12﹣,OA==13,∴DB=13﹣,∵AB=DB,∴m﹣=13﹣,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,).故答案为:(8,). 点睛:本题主要考查了反比例函数图象上点的坐标特征以及平行四边形的性质的运用,解决问题的关键是作辅助线构造相似三角形,依据平行四边形的对边相等以及相似三角形的对应边成比例进行计算,解题时注意方程思想的运用.考点:反比例函数图象上点的坐标特征;平行四边形的性质;方程思想;综合题.48.(2017江苏省宿迁市,第16题,3分)如图,矩形ABOC的顶点O在坐标原点,顶点B,C分别在x,y轴的正半轴上,顶点A在反比例函数(k为常数,k>0,x>0)的图象上,将矩形ABOC绕点A按逆时针方向旋转90°得到矩形AB′O′C′,若点O的对应点O′恰好落在此反比例函数图象上,则的值是.【答案】.【分析】设A(m,n),则OB=m,OC=n,根据旋转的性质得到O′C′=n,B′O′=m,于是得到O′(m+n,n﹣m),于是得到方程(m+n)(n﹣m)=mn,求得,(负值舍去),即可得到结论.【解析】设A(m,n),则OB=m,OC=n,∵矩形ABOC绕点A按逆时针反向旋转90°得到矩形AB′O′C′,∴O′C′=n,B′O′=m,∴O′(m+n,n﹣m),∵A,O′在此反比例函数图象上,∴(m+n)(n﹣m)=mn,∴m2+mn﹣n2=0,∴m=n,∴,(负值舍去),∴的值是,故答案为:.点睛:本题考查了坐标与图形变化﹣旋转,反比例函数图象上点的坐标特征,正确的理解题意是解题的关键. 考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;矩形的性质.49.(2017江苏省常州市,第18题,2分)如图,已知点A是一次函数(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数(x>0)的图象过点B,C,若△OAB的面积为6,则△ABC的面积是.【答案】3.【分析】作辅助线,构建直角三角形,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,),则B(x,),C(x+a,),因为B、C都在反比例函数的图象上,列方程组可得结论.【解析】如图,过C作CD⊥y轴于D,交AB于E,∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,),则BB(x,),C(x+a,),∴,由①得:ax=6,由②得:2k=4ax+x2,由③得:2k=2a(a+x)+x(a+x),2a2+2ax+ax+x2=4ax+x2,2a2=ax=6,a2=3,∵S△ABC=AB•CE=•2a•a=a2=3.故答案为:3. 点睛:本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等腰直角三角形;反比例函数综合题.50.(2017江苏省盐城市,第16题,3分)如图,曲线l是由函数在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(,),B(,)的直线与曲线l相交于点M、N,则△OMN的面积为.【答案】8.【分析】由题意A(,),B(,),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN=S△OBM﹣S△OBN计算即可.【解析】∵A(,),B(,),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴. 在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由,解得或,∴M(1.6),N(3,2),∴S△OMN=S△OBM﹣S△OBN=×46﹣×42=8,故答案为:8.点睛:本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义.51.(2017江苏省连云港市,第15题,3分)设函数与y=﹣2x﹣6的图象的交点坐标为(a,b),则的值是.【答案】﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b的值代入即可求出值.点睛:此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a与b的关系式是解本题的关键.考点:反比例函数与一次函数的交点问题.52.(2017江苏省连云港市,第16题,3分)如图,已知等边三角形OAB与反比例函数(k>0,x>0)的图象交于A、B两点,将△ OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则的值为.(已知sin15°=)【答案】.【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解析】如图,过O作OM⊥x轴于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°==,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=,∴OB=,∴=,∴BF=,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴==,故答案为:. 点睛:本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,根据等腰直角三角形斜边是直角边的倍表示斜边的长,从而解决问题.考点:反比例函数与一次函数的交点问题;等边三角形的性质;翻折变换(折叠问题);解直角三角形.53.(2017浙江省宁波市,第17题,4分)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为.【答案】4或.【分析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),然后分两种情况进行讨论:一是AB边的中点在反比例函数的图象上,二是AC边的中点在反比例函数的图象上,进而算出m的值.【解析】∵△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),∴AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),∵将△ABC向右平移m(m>0)个单位后,∴AB边的中点平移后的坐标为(﹣1+m,1),AC边的中点平移后的坐标为(﹣2+m,﹣2).∵△ABC某一边的中点恰好落在反比例函数的图象上,∴﹣1+m=3或﹣2×(﹣2+m)=3,∴m=4或m=.故答案为:4或. 点睛:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移;分类讨论.54.(2017浙江省温州市,第15题,5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数(k≠0)的图象恰好经过点A′,B,则k的值为.【答案】.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解析】∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:. 点睛:本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.考点:反比例函数图象上点的坐标特征;矩形的性质;轴对称的性质;综合题.55.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数和在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.【答案】k=或.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,②AC=BC,即可解题. 点睛:本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k表示点A、B、C坐标是解题的关键.考点:反比例函数与一次函数的交点问题;等腰三角形的性质;分类讨论;综合题.56.(2017金华,第15题,4分)如图,已知点A(2,3)和点B(0,2),点A在反比例函数的图象上,做射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为.【答案】(﹣1,﹣6).【分析】先过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据直线AB的解析式为,可得PF=,将△ AGP绕点A逆时针旋转90°得△AEH,构造△ADP≌△ADH,再设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,在Rt△PDF中,根据PF2+DF2=PD2,可得方程,进而得到D(1,0),即可得出直线AD的解析式为y=3x﹣3,最后解方程组即可得到D点坐标.【解析】如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组:,可得:或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).点睛:本题主要考查了反比例函数与一次函数图象交点问题,以及反比例函数图象上点的坐标特征的运用,解决问题的关键是作辅助线构造正方形以及全等三角形,依据勾股定理列方程进行求解.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;综合题.57.(2017湖北省孝感市,第16题,3分)如图,在平面直角坐标系中,OA=AB,∠ OAB=90°,反比例函数(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【答案】.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,∵∠AOE=∠GAB,∠AOE=∠AGB,AO=AB,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.点睛:本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.考点:反比例函数图象上点的坐标特征;全等三角形的判定与性质.58.( 2017湖北省荆州市,第18题,3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为.【答案】3.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE==,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为,然后确定N点坐标,最后计算BN的长.【解析】∵S矩形OABC=32,∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE==,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM==,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入得k=﹣2×4=﹣8,∴反比例函数解析式为,当x=﹣8时,=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为:3.点睛:本题考查了旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了反比例函数图象上点的坐标特征和解直角三角形.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义;解直角三角形;综合题.59.(2017湖北省鄂州市,第15题,3分)如图,AC⊥ x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=,点D为AC与反比例函数的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.【答案】﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=,可求得△ABC的面积,再根据点D将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k的值.点睛:本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k| ,且保持不变.解题时注意分类思想的运用.考点:反比例函数与一次函数的交点问题;数形结合;分类讨论.60.(2017湖南省株洲市,第17题,3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数(x>0)的图象上,顶点B在函数(x>0)的图象上,∠ABO=30°,则=.【答案】.【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,相比即可.【解析】如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数(x>0)的图象上,∴k1=a•a=,Rt△BOC中,OB=2OC=a,∴BC==3a,∴B(a,﹣3a),∵B在函数(x>0)的图象上,∴k2=﹣3aa=,∴=;故答案为:. 点睛:本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A、B两点的坐标是关键.考点:反比例函数图象上点的坐标特征;综合题.61.(2017贵州省遵义市,第18题,4分)如图,点E,F在函数的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.【答案】.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,),则F点的坐标为(3t,),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【解析】作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴,即HF=3PE,设E点坐标为(t,),则F点的坐标为(3t,),∵S△OEF+S△OFD=S △OEC+S梯形ECDF,而S△OFD=S△OEC=×2=1,∴S△OEF=S梯形ECDF=(+)(3t﹣t)=;故答案为:.点睛:本题考查了反比例函数的几何意义、相似三角形的判定与性质;掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义,证明三角形相似是解决问题的关键.考点:反比例函数系数k的几何意义.62.(2017辽宁省盘锦市,第16题,3分)在平面直角坐标系中,点P的坐标为(0,﹣5),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于y轴,且AB=8,反比例函数(k≠0)经过点B,则k=.【答案】﹣8或﹣32.【分析】设AB交y轴于点C,利用垂径定理可求得PC的长,则可求得B点坐标,代入反比例函数解析式可求得k的值.【解析】设线段AB交y轴于点C,当点C在点P的上方时,连接PB,如图,∵⊙P与x轴相切,且P(0,﹣5),∴PB=PO=5,∵AB=8,∴BC=4,在Rt△PBC中,由勾股定理可得PC==3,∴OC=OP﹣PC=5﹣3=2,∴B点坐标为(4,﹣2),∵反比例函数(k≠0)经过点B,∴k=4×(﹣2)=﹣8;当点C在点P下方时,同理可求得PC=3,则OC=OP+PC=8,∴B(4,﹣8),∴k=4×(﹣8)=﹣32;综上可知k的值为﹣8或﹣32,故答案为:﹣8或﹣32. 点睛:本题主要考查切线的性质及反比例函数图象上点的坐标特征,利用垂径定理和切线的性质求得PC的长是解题的关键,注意分两种情况.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论.63.(2017黑龙江省齐齐哈尔市,第18题,3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.【答案】﹣24.【分析】易证S菱形ABCO=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即可求得点C的坐标,代入反比例函数即可解题.【解析】作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S△ADO=S△DEO,同理S△BCD=S△CDE,∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,∵S菱形ABCO=AO•CF=20x2,解得:x=,∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数的图象经过点C,∴代入点C得:k=﹣24,故答案为:﹣24. 点睛:本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;菱形的性质;解直角三角形;综合题.64.(2017山东省济南市,第20题,3分)如图,过点O的直线AB与反比例函数的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数(x<0)的图象交于点C,连接AC,则△ABC的面积为.【答案】8.【分析】由A(2,1)求得两个反比例函数分别为,,与AB的解析式y=x,解方程组求得B的坐标,进而求得C点的纵坐标,即可求得BC,根据三角形的面积公式即可求得结论. 点睛:本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.考点:反比例函数与一次函数的交点问题;反比例函数及其应用.65.(2017山东省莱芜市,第15题,4分)直线y=kx+b与双曲线交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE=.【答案】16.【分析】利用待定系数法求出平移后的直线的解析式,求出点D、E的左边,再利用分割法求出三角形的面积即可.【解析】由题意A(﹣3,2),B(1,﹣6),∵直线y=kx+b经过点A(﹣3,2),B(1,﹣6),∴,解得:,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由,解得:和,不妨设D(3,﹣2),E(﹣1,6),∴S△ADE=6×8﹣×4×2﹣×6×4﹣×8×4=16,故答案为:16.点睛:本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.66.(2016云南省昆明市)如图,反比例函数(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为. 【答案】.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解析】设点B坐标为(a,b),则DO=﹣a,BD=b.∵AC⊥x轴,BD⊥x轴,∴BD∥AC.∵OC=CD,∴CE=BD=b,CD=DO=a.∵四边形BDCE的面积为2,∴(BD+CE)×CD=2,即(b+b)×(a)=2,∴ab=.将B(a,b)代入反比例函数(k≠0),得:k=ab=.故答案为:.考点:反比例函数系数k的几何意义;平行线分线段成比例.67.(2016内蒙古包头市)如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数(x<0)的图象经过点A,若S△ABO=,则k的值为. 【答案】.【分析】过点A作AD⊥x轴于点D,由∠AOB=30°可得出,由此可是点A的坐标为(﹣3a,a),根据S△ABO=结合三角形的面积公式可用a表示出线段OB的长,再由勾股定理可用含a的代数式表示出线段BD的长,由此即可得出关于a的无理方程,解方程即可得出结论.【解析】过点A作AD⊥x轴于点D,如图所示.∵∠AOB=30°,AD⊥OD,∴=tan∠AOB=,∴设点A的坐标为(﹣3a,a).∵S△ABO=OB•AD=,∴OB=.在Rt△ADB中,∠ADB=90°,AD=a,AB=OB=,∴=,BD=.∵OD=OB+BD=3a,即,解得:a=1或a=﹣1(舍去),∴点A的坐标为(﹣3,),∴k=﹣3×=.故答案为:. 考点:反比例函数系数k的几何意义.68.(2016内蒙古呼和浩特市)已知函数,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.【答案】y>1或≤y<0.【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,根据图象写出y的取值.【解析】当x=﹣1时,y==1,当x=2时,y=,由图象得:当﹣1<x<0时,y>1,当x≥2时,≤y<0,故答案为:y>1或≤y<0.考点:反比例函数的性质.69.(2016四川省内江市)如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,则△OAB的面积等于.【答案】. 【分析】延长AB交y轴于点C,根据反比例函数系数的几何意义求出△BOC的面积与△AOC的面积,然后相减即可得解.【解析】延长AB交y轴于点C.S△OAC=×5=,S△OCB=×8=4,则S△OAB=S△OCB﹣S△OAC=4﹣=.故答案为:.考点:反比例函数系数k的几何意义.70.(2016四川省眉山市)如图,已知点A是双曲线在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是.【答案】.【分析】根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出OC=OA,求出△OFC∽△AEO,相似比=,求出面积比=3,求出△OFC的面积,即可得出答案. 考点:反比例函数图象上点的坐标特征;等边三角形的性质;解直角三角形;相似三角形的判定和性质;综合题.71.(2016四川省达州市)如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为.【答案】(2,7).【分析】首先过点D作DF⊥x轴于点F,易证得△AOB∽△DFA,然后由相似三角形的对应边成比例,求得点D的坐标,即可求得反比例函数的解析式,再利用平移的性质求得点C的坐标,继而求得直线BC的解析式,则可求得点E的坐标. 【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴反比例函数的解析式为:①,点C的坐标为:(4,8),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:②,联立①②得:或(舍去),∴点E的坐标为:(2,7).故答案为:(2,7).考点:反比例函数图象上点的坐标特征.72.(2016山东省滨州市)如图,已知点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是.【答案】3.【分析】设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段AB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,连接OA、OB,延长AB交y轴于点E,通过计算三角形的面积结合反比例函数系数k的几何意义即可得出结论. 【解析】设点A、B的纵坐标为,点C、D的纵坐标为,则点A(,),点B(,),点C(,),点D(,).∵AB=,CD=,∴2×=,∴.∵,∴,.连接OA、OB,延长AB交y轴于点E,如图所示.S△OAB=S△OAE﹣S△OBE=(a﹣b)=AB•OE==,∴a﹣b=2S△OAB=3.故答案为:3.考点:反比例函数的性质.73.(2016广东省深圳市)如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数(x<0)的图象上,则k的值为.【答案】. 【分析】根据旋转的性质以及平行四边形的性质得出∠BAO=∠AOF=∠AFO=∠OAF,进而求出D点坐标,进而得出k的值.考点:平行四边形的性质;反比例函数图象上点的坐标特征;旋转的性质.74.(2016广西南宁市)如图所示,反比例函数(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为.【答案】2.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解析】过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2. 考点:反比例函数系数k的几何意义.