- 261.50 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
29.3课题学习 制作立体模型
1.能根据简单物体的三视图制作原实物图形;(重点)
2.能根据实物图制作展开图,根据展开图确定实物图.(难点)
一、情境导入
下面的每一组平面图形都是由四个等边三角形组成的.
(1)指出其中哪些可折叠成多面体.把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;
(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等” 的;
(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?
二、合作探究
探究点一:根据三视图判断立体模型
【类型一】 由三视图得到立体图形
如图,是一个实物在某种状态下的三视图,与它对应的实物图应是( )
解析:从俯视图可以看出直观图的下面部分为圆台,从左视图和主视图可以看出是一个站立的圆台.只有A满足这两点,故选A.
方法总结:本题考查三视图的识别和判断,熟记一些简单的几何体的三视图是解答本题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】 根据三视图判断实物的组成情况
学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有( )
A.7盒 B.8盒 C.9盒 D.10盒
解析:观察图形得第一层有4盒,第二层最少有2盒,第三层最少有1盒,所以至少共有7盒.故选A.
方法总结:考查对三视图的掌握程度和灵活运用的能力,同时也考查空间想象能力.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型三】 综合性问题[来源:Z|xx|k.Com]
如图是一个几何体从三个方向看所得到的形状图.
(1)写出这个几何体的名称;
(2)画出它的一种表面展开图;[来源:学科网ZXXK]
(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.
解析:(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为三棱柱;(2)此几何体的表面展开图由三个长方形和两个三角形组成;(3)侧面积由3个长方形组成,它的长和宽分别为3cm和2cm,计算出一个长方形的面积,乘以3即可.[来源:Zxxk.Com]
解:(1)正三棱柱;
(2)如图所示:
(3)3×3×2=18(cm2).
答:这个几何体的侧面积为18cm2.[来源:学*科*网]
方法总结:本题主要考查由三视图确定几何体和求几何体的侧面积等相关知识,关键是知道棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
探究点二:平面图的展开与折叠
【类型一】 根据展开图判断原实物体
如图所示为立体图形的展开图,请写出对应的几何体的名称.
解析:在本题的解答过程中,可以动手进行折纸,也可以根据常见立体图形的平面展开图的特征做出判断.
解:几何体分别为五棱柱、圆柱与圆锥.
方法总结:熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题
【类型二】 判断几何体的展开图
如图所示的四幅平面图中,是三棱柱的表面展开图的有 ________(只填序号).
解析:三棱柱的两底展开是三角形,侧面展开是三个矩形,根据题设可知①②③符合题意,故答案为①②③.
方法总结:本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
【类型三】 展开与折叠的综合性问题
如图是一个正方体的表面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的数相等.
(1)求x的值;
(2)求正方体的上面和底面的数字之和.
解析:(1)正方体的表面展开图,由相对面之间一定相隔一个正方形可确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字为3和1,然后相加即可.
解:根据正方体的表面展开图中相对面之间一定相隔一个正方形,可得“A”与“-2”是相对面,“3”与“1”是相对面,“x”与“3x-2”是相对面.
(1)∵正方体的左面与右面标注的数字相等,∴x=3x-2,解得x=1;[来源:学+科+网]
(2)∵标注了A字母的是正方体的正面,左面与右面标注的数字相等,∴上面和底面上的两个数字为3和1,∴上面和底面上的数字之和为3+1=4.
方法总结:本题主要考查了正方体相对两个面上的数字,注意正方体是空间图形,从相对面入手分析、解答问题.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
三、板书设计
一、学习目的;
二、工具准备;
三、具体活动;
四、课题拓广.
三视图和平面展开图是以不同方式描绘立体图形的,它们在生产实际中有直接应用.了解这方面的例子,可以丰富实践知识,进一步认识三视图和平面展开图.