• 59.50 KB
  • 2021-11-06 发布

2020届九年级数学下册 第7章 锐角三角函数 7

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎7.2正弦、余弦(一)‎ 课题 ‎7.2正弦、余弦(一)‎ 自主 空间 学习目标 知识与技能:理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。‎ 过程与方法:能用函数的观点理解正弦、余弦和正切。‎ 情感、态度与价值观:通过对正弦、余弦概念的学习感受数学知识的系统性。‎ 学习重点 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。‎ 学习难点 在直角三角形中求出某个锐角的正弦和余弦值。‎ 教学流程 预 习 导 航 问题1:如图,小明沿着某斜坡向上行 走了‎13m后,他的相对位置升高了‎5m,如果 他沿着该斜坡行走了‎20m,那么他的相对位 置升高了多少?行走了a m呢?‎ 问题2:在上述问题中,他在水平方向又分别前进了多远?‎ 合 作 探 究 新知探究:‎ ‎1.思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________;它的邻边与斜边的比值___________。‎ 4‎ ‎(根据是______________________________。)‎ ‎2.正弦的定义 ‎ 如图,在Rt△ABC中,∠C=90°,‎ 我们把锐角∠A的对边a与斜边c的比 叫做∠A的______,记作________,即:sinA=________=________.‎ ‎3.余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与 斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。‎ ‎(你能写出∠B的正弦、余弦的表达式吗?)试试看________________.‎ ‎4.怎样计算任意一个锐角的正弦值和余弦值呢?‎ ‎(1)如书P42图7—8,当小明沿着15°的斜坡行走了1个单位长度到P点时,他的位置在竖直方向升高了约0.26个单位长度,在水平方向前进了约0.97个单位长度。‎ 根据正弦、余弦的定义,可以知道:sin15°=0.26,cos15°=0.97‎ ‎(2)你能根据图形求出sin30°、cos30°吗?sin75°、cos75°呢?‎ sin30°=_____,cos30°=_____.sin75°=_____,cos75°=_____.‎ ‎(3)利用计算器我们可以更快、更精确地求得各个锐角的正弦值和余弦值。‎ ‎(4)观察与思考:‎ 从sin15°,sin30°,sin75°的值,你们得到什么结论?‎ 从cos15°,cos30°,cos75°的值,你们得到什么结论?‎ 当锐角α越来越大时,它的正弦值是怎样变化的?余弦值又是怎样变化的?‎ 4‎ 例题分析: ‎ 例:已知:如图,∠ACB=90°,CD⊥AB,垂足为D.‎ ‎(1)‎ ‎(2)‎ ‎(3)‎ ‎(4)‎ 展示交流:‎ ‎1.根据如图中条件,分别求出下列直角三角形中锐角的正弦、余弦值。‎ ‎2.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA=_____,‎ cosA=_____,sinB=_____,cosB=_____。‎ ‎3.在Rt△ABC中,AC=BC,∠C=90°,‎ 求(1)cosA;(2)当AB=4时,求BC的长。‎ 4‎ ‎4.已知在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,且a:b:c=5:12:13,试求最小角的三角函数值。‎ 四、提炼总结:三角函数的实质是直角三角形中边之间的比:‎ ‎ ‎ 当 堂 达 标 ‎1.在Rt△ABC中,∠C=90°,AC=,BC=1,则sinA=_____,cosB=_______,cosA=________,sinB=_______.‎ ‎2.在Rt△ABC中,如果各边长度都扩大3倍,则锐角A的各个三角函数值(  )‎ A.不变化  B.扩大3倍  C.缩小  D.缩小3倍 ‎3.若0°<α<90°,则下列说法不正确的是(  )‎ A、sinα随α的增大而增大 ‎ B、cosα随α的增大而减小 C、tanα随α的增大而增大 ‎ D、sinα、cosα、tanα的值都随α的增大而增大 ‎4.在Rt△ABC中,∠C=90°,tanA=,AB=10,求BC和cosB。‎ 学习反思:‎ 4‎ 4‎