- 562.15 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020-2021 学年初三数学上册同步练习:关于原点对称的点的坐标
1.如果把三角形各顶点的纵、横坐标都乘以 1 ,得到 1 1 1A B C ,则这两个三角形在坐标中的位置关系是( )
A.关于 x 轴对称 B.关于 y 轴对称
C.关于原点对称 D.无对称关系
【答案】C
【解析】【分析】
根据“关于原点对称的点的横坐标和纵坐标互为相反数解答”.
【详解】
解:纵、横坐标都乘以-1 后,相对应的各点的横纵坐标均互为相反数,那么对应点关于原点对称,则这两
个三角形在坐标中的位置关系是关于原点对称.
故选 C.
【点评】横纵坐标均互为相反数的点关于原点对称,那么对应点所在的图形也关于原点对称.
2.已知 a<0,则点 P(-a2,-a+1)关于原点的对称点 P′在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】D
【解析】因为点 P(-a2,-a+1)关于原点的对称点为 P′,所以 P′(a2,a-1),
又因为 a<0,所以 a-1<0,a2>0,所以 P′在第四象限.故选 D.
3.如图,在平面直角坐标系中,▱ MNEF 的两条对角线 ME,NF 交于原点 O,点 F 的坐标是(3,2),则点 N 的坐标为
( )
A.(-3,-2) B.(-3,2) C.(-2,3) D.(2,3)
【答案】A
【解析】对于平行四边形 MNEF,点 N 的对称点即为点 F,所以点 F 到 X 轴的距离为 2,到 Y 轴的距离为
3.即点 N 到 X、Y 轴的距离分别为 2、3,且点 N 在第三象限,所以点 N 的坐标为(—3,—2)
4.已知点 P(2+m,n-3)与点 Q(m,1+n)关于原点对称,则 m-n 的值是( )
A.1 B. 1 C.2 D. 2
【答案】D
【解析】试题分析:根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得 m、n 的值,根
据有理数的减法,可得答案.
解:由点 P(2+m,n﹣3)与点 Q(m,1+n)关于原点对称,得
2+m+m=0,n﹣3+1+n=0.
解得 m=﹣1,n=1.
m﹣n=﹣1﹣1=﹣2,
故选 D.
【点评】关于原点对称的点的坐标.
5.已知点 P(a+1, 12
a)关于原点的对称点在第四象限,则 a 的取值范围在数轴上表示正确的是( )
A. B.
C. D.
【答案】C
【解析】试题分析:∵P( 1a , 12
a)关于原点对称的点在第四象限,∴P 点在第二象限,∴ 10a ,
102
a ,解得: 1a ,则 a 的取值范围在数轴上表示正确的是 .故选 C.
【点评】1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.
6.若点 ( 2 ,6)A m n 与点 (4,3 )Bm关于原点对称,则 mn______;
【答案】-1
【解析】【分析】
平面直角坐标系中任意一点 P(x,y),关于原点的对称点是(-x,-y),可据此求出 m、n 的值.
【详解】
∵点 与点 关于坐标系原点对称,
∴m-2n=-4,3m=-6
解得:m=-2,n=1.
故 m+n=-2+1=-1.
故答案为:-1.
【点评】本题考查了关于原点对称的点坐标的关系,是需要识记的基本问题.
7.已知点 P(3,-1)关于原点的对称点 Q 的坐标是(a+b,b-1),则 ab 的值是_________
【答案】25
【解析】【分析】
直接利用关于原点对称点的性质得出关于 a,b 的方程组得出答案.
【详解】
∵点 P(3,-1)关于原点的对称点 Q 的坐标是(a+b,b-1),
∴
3
11
ab
b
=
= ,
解得:
2
5
b
a
=
= ,
∴ab=(-5)2=25.
故答案为:25.
【点评】此题主要考查了关于原点对称点的性质,正确求出 a,b 的值是解题关键.
8.在直角坐标系中,将点 2 ,3 关于原点的对称点向左平移 2 个单位长度得到的点的坐标是________.
【答案】(0,﹣3).
【解析】试题分析:∵点(﹣2,3)关于原点的对称点为:(2,﹣3),
∴(2,﹣3)再向左平移 2 个单位长度得到的点的坐标是:(0,﹣3).
故答案为(0,﹣3).
【点评】关于原点对称的点的坐标;坐标与图形变化-平移.
9.如图,△ ABC 中任意一点 P(xo,yo),将△ ABC 平移后得到△ A1B1C1,点 P 的对应点 P1(xo+6,yo+4).
(1)写出 A1、B1、C1 的坐标.
(2)若三角形外有一点 M 经过同样的平移后得到点 N(5,3),写出 M 点关于原点对称的点的坐标.
【答案】(1)A1(5,6); B1(5,4); C1(10,4);(2)( 1,1).
【解析】【分析】
(1)由图可知 ABC 三点坐标,由 P 点的移动情况可知移动的距离,据此进行解答;
(2)由 N 点可确定 M 点,再利用关于原点对称的坐标点之间的性质即可解答.
【详解】
解:(1)∵原来点 A 的坐标为(﹣1,2), B 的坐标为(﹣1,0), C 的坐标为(4,0),点 P 的对应点 P1
(xo+6,yo+4),
∴A1(5,6); B1(5,4); C1(10,4);
(2)∵有一点 M 经过同样的平移后得到点 N(5,3),
∴点 M 的坐标为(﹣1,﹣1),
∴M 点关于原点对称的点的坐标为(1,1).
【点评】本题考察了坐标点的平移和中心对称.
10.若 x1、x2 是方程 5x2-4x-1=0 的两个根,且点 A(x1,x2)在第二象限,点 B(m,n)和点 A 关于原点
O 对称,求
22mn
mn
的值.
【答案】 195
15
【解析】【分析】
用十字相乘法因式分解求出方程的两个根,确定点 A 的坐标,根据关于原点对称的点的坐标,得到点 B 坐标,
求出 m、n 的值,然后代入代数式求出代数式的值.
【详解】
解:因为点 A(x1,x2)在第二象限,所以 x1<0,x2>0.
方程 5x2-4x-1=0 的两个根是 x1=- 1
5
,x=1.
又因为点 B 和点 A 关于原点对称,所以 m= 1
5
,n=-1.
所以
22mn
mn
=
2
21 261 131955 25
161515155
.
【点评】本题考查了用因式分解法解一元二次方程,平面直角坐标系中点的坐标特征,关于原点对称的点的
特征,确定 m、n 的值是解答本题的关键.
11.直角坐标系第二象限内的点 P(x2+2x,3)与另一点 Q(x+2,y)关于原点对称,试求 x+2y 的值.
【答案】-7
【解析】试题分析:点 P(x2+2x,3)与另一点 Q(x+2,y)关于原点对称,则坐标也关于原点对称,即坐标
互为相反数,所以可以得到 x2+2x=-(x+2),3=-y,所以解得 x1=-1,x2=-2.又因点 p 在第二象限,所以
x2+2x<0,所以=-1,故 x+2y=-7.
根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.
∵点 P 在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.
相关文档
- 新人教地理8年级上:同步试题(水资源)2021-11-017页
- 2020人教版数学八年级上册重点知识2021-11-0156页
- 新人教地理8年级上:同步试题(气候)2021-10-275页
- 新人教地理8年级上:同步试题(地形和2021-10-276页
- 新人教地理8年级上:同步试题(交通运2021-10-275页
- 新人教地理8年级上:同步试题(自然资2021-10-275页
- 八年级数学平面直角坐标系同步试题2021-10-273页
- 新人教地理8年级上:同步试题(工业)2021-10-275页
- 新人教地理8年级上:同步试题(河流)2021-10-275页
- 新人教地理8年级上:同步试题(农业)2021-10-265页