- 350.00 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年辽宁省阜新市中考数学试卷
一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)
1.(3分)﹣2018的相反数是( )
A.﹣2018 B.2018 C.±2018 D.﹣
2.(3分)如图所示,是一个空心正方体,它的左视图是( )
A. B. C. D.
3.(3分)某中学篮球队12名队员的年龄情况如下表:
年龄/岁
12
13
14
15
16
人数
1
3
4
2
2
关于这12名队员的年龄,下列说法中正确的是( )
A.众数为14 B.极差为3 C.中位数为13 D.平均数为14
4.(3分)不等式组的解集,在数轴上表示正确的是( )
A. B. C. D.
5.(3分)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是( )
A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)
6.(3分)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是( )
A.25° B.35° C.15° D.20°
7.(3分)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )
A. B. C. D.
8.(3分)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为( )
A.=4 B.=4
C.=4 D.=4×2
9.(3分)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为( )
A.(1,1) B.(0,) C.() D.(﹣1,1)
10.(3分)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是( )
A.ac>0 B.b2﹣4ac<0
C.对称轴是直线x=2.5 D.b>0
二、填空题(每小题3分,共18分)
11.(3分)函数的自变量x的取值范围是 .
12.(3分)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为 .
13.(3分)如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为 .
14.(3分)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为 .
15.(3分)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为 m(结果保留根号).
16.(3分)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是 km/h.
三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)
17.(8分)(1)计算:()﹣2+﹣2cos45°;
(2)先化简,再求值:÷(1+),其中a=2.
18.(8分)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;
(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;
(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).
19.(8分)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:
(1)这次抽查了四类特色美食共 种,扇形统计图中a= ,扇形统计图中A部分圆心角的度数为 ;
(2)补全条形统计图;
(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?
20.(8分)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.
(1)求购买一个篮球,一个足球各需多少元?
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?
21.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;
(2)点M,N分别在直线AD,AC上,且∠BMN=90°.
①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;
②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.
22.(10分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.
(1)求这个二次函数的表达式;
(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;
(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.
2018年辽宁省阜新市中考数学试卷
参考答案与试题解析
一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)
1.(3分)﹣2018的相反数是( )
A.﹣2018 B.2018 C.±2018 D.﹣
【分析】只有符号不同的两个数叫做互为相反数.
【解答】解:﹣2018的相反数是2018.
故选:B.
2.(3分)如图所示,是一个空心正方体,它的左视图是( )
A. B. C. D.
【分析】直接利用左视图的观察角度进而得出答案.
【解答】解:如图所示:
左视图为:.
故选:C.
3.(3分)某中学篮球队12名队员的年龄情况如下表:
年龄/岁
12
13
14
15
16
人数
1
3
4
2
2
关于这12名队员的年龄,下列说法中正确的是( )
A.众数为14 B.极差为3 C.中位数为13 D.平均数为14
【分析】根据众数、中位数、平均数与极差的定义逐一计算即可判断.
【解答】解:A、这12个数据的众数为14,正确;
B、极差为16﹣12=4,错误;
C、中位数为=14,错误;
D、平均数为=,错误;
故选:A.
4.(3分)不等式组的解集,在数轴上表示正确的是( )
A. B. C. D.
【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.
【解答】解:
∵解不等式①得:x>﹣2,
解不等式②得:x≤2,
∴不等式组的解集为﹣2<x≤2,
在数轴上表示为,
故选:B.
5.(3分)反比例函数y=的图象经过点(3,﹣2),下列各点在图象上的是( )
A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)
【分析】直接利用反比例函数图象上点的坐标特点进而得出答案.
【解答】解:∵反比例函数y=的图象经过点(3,﹣2),
∴xy=k=﹣6,
A、(﹣3,﹣2),此时xy=﹣3×(﹣2)=6,不合题意;
B、(3,2),此时xy=3×2=6,不合题意;
C、(﹣2,﹣3),此时xy=﹣3×(﹣2)=6,不合题意;
D、(﹣2,3),此时xy=﹣2×3=﹣6,符合题意;
故选:D.
6.(3分)AB是⊙O的直径,点C在圆上,∠ABC=65°,那么∠OCA的度数是( )
A.25° B.35° C.15° D.20°
【分析】根据直径得出∠ACB=90°,进而得出∠CAB=25°,进而解答即可.
【解答】解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠ABC=65°,
∴∠CAB=25°,
∵OA=OC,
∴∠OCA=∠CAB=25°,
故选:A.
7.(3分)如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )
A. B. C. D.
【分析】先设阴影部分的面积是x,得出整个图形的面积是7x,再根据几何概率的求法即可得出答案.
【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,
则这个点取在阴影部分的概率是=,
故选:C.
8.(3分)甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为( )
A.=4 B.=4
C.=4 D.=4×2
【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.
【解答】解:设特快列车的平均行驶速度为xkm/h,由题意得
,
故选:C.
9.(3分)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为( )
A.(1,1) B.(0,) C.() D.(﹣1,1)
【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.
【解答】解:∵四边形OABC是正方形,且OA=1,
∴B(1,1),
连接OB,
由勾股定理得:OB=,
由旋转得:OB=OB1=OB2=OB3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(﹣1,1),B3(﹣,0),…,
发现是8次一循环,所以2018÷8=252…余2,
∴点B2018的坐标为(﹣1,1)
故选:D.
10.(3分)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是( )
A.ac>0 B.b2﹣4ac<0
C.对称轴是直线x=2.5 D.b>0
【分析】直接利用二次函数图象与系数的关系进而分析得出答案.
【解答】解:A、∵抛物线开口向下,
∴a<0,
∵抛物线与y轴交在正半轴上,
∴c>0,
∴ac<0,故此选项错误;
B、∵抛物线与x轴有2个交点,
∴b2﹣4ac>0,故此选项错误;
C、∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),
∴对称轴是直线x=1.5,故此选项错误;
D、∵a<0,抛物线对称轴在y轴右侧,
∴a,b异号,
∴b>0,故此选项正确.
故选:D.
二、填空题(每小题3分,共18分)
11.(3分)函数的自变量x的取值范围是 x≠3 .
【分析】根据分母不等于0列不等式求解即可.
【解答】解:由题意得,x﹣3≠0,
解得x≠3.
故答案为:x≠3.
12.(3分)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为 52° .
【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.
【解答】解:∵AB∥CD,∠EGF=64°,
∴∠BEG=∠EGF=64°,
又∵EG平分∠BEF,
∴∠BEF=2∠BEG=128°,
∴∠AEF=180°﹣128°=52°,
故答案为:52°.
13.(3分)如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为 4 .
【分析】根据矩形的性质可得AD∥BC,那么△DEF∽△BCF,利用相似三角形对应边成比例即可求出线段BF的长度.
【解答】解:∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
∴=,
∵点E为AD中点,
∴DE=AD,
∴DE=BC,
∴=,
∴BF=2DF=4.
故答案为4.
14.(3分)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为 5 .
【分析】由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8﹣x,且A1B=4,在Rt△A1BE中,利用勾股定理可列方程,则可求得答案.
【解答】解:
由折叠的性质可得AE=A1E,
∵△ABC为等腰直角三角形,BC=8,
∴AB=8,
∵A1为BC的中点,
∴A1B=4,
设AE=A1E=x,则BE=8﹣x,
在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5,
故答案为:5.
15.(3分)如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC是30m,那么塔AC的高度为 10 m(结果保留根号).
【分析】根据三角函数和直角三角形的性质解答即可.
【解答】解:∵在点B处测得塔顶A的仰角为30°,
∴∠B=30°,
∵BC=30m,
∴AC=m,
故答案为:10
16.(3分)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是 3.6 km/h.
【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.
【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.
设乙的速度为xkm/h
2.5×(6+x)=36﹣12×2
解得x=3.6
故答案为:3.6
三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)
17.(8分)(1)计算:()﹣2+﹣2cos45°;
(2)先化简,再求值:÷(1+),其中a=2.
【分析】(1)根据负整数指数幂的意义,二次根式的性质以及特殊角锐角三角函数值即可求出答案.
(2)根据分式的运算法则即可求出答案.
【解答】解:(1)原式=4+3﹣2×
=4+3﹣
=4+2
(2)原式=÷
=×
=
当a=2时,
原式==
18.(8分)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣4,4),B(﹣2,5),C(﹣2,1).
(1)平移△ABC,使点C移到点C1(﹣2,﹣4),画出平移后的△A1B1C1,并写出点A1,B1的坐标;
(2)将△ABC绕点(0,3)旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2;
(3)求(2)中的点C旋转到点C2时,点C经过的路径长(结果保留π).
【分析】(1)根据点C移到点C1(﹣2,﹣4),可知向下平移了5个单位,分别作出A、B、C的对应点A1、B1、C1即可解决问题;
(2)根据中心对称的性质,作出A、B、C的对应点A2、B2、C2即可;
(3)利用勾股定理计算CC2,可得半径为2,根据圆的周长公式计算即可.
【解答】解:(1)如图所示,则△A1B1C1为所求作的三角形,(2分)
∴A1(﹣4,﹣1),B1(﹣2,0);(4分)
(2)如图所示,则△A2B2C2为所求作的三角形,(6分)
(3)点C经过的路径长:是以(0,3)为圆心,以CC2为直径的半圆,
由勾股定理得:CC2==4,
∴点C经过的路径长:×2πr=2π.(8分)
19.(8分)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:
(1)这次抽查了四类特色美食共 20 种,扇形统计图中a= 40 ,扇形统计图中A部分圆心角的度数为 72° ;
(2)补全条形统计图;
(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?
【分析】(1)根据A类的种数除以占的百分比即可得到总人数;再根据总数依次求出即可;
(2)求出B的种数是20﹣4﹣6﹣8=2,画出即可;
(3)用样本估计总体.
【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,
∵8÷20=0.4=40%,
∴a=40,
360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,
故答案为:20,40,72°;
(2);
(3)120×=36(种),
答:估计约有36种属于“豆制品类”.
20.(8分)在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.
(1)求购买一个篮球,一个足球各需多少元?
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?
【分析】(1)设购买一个篮球需x元,购买一个足球需y元,根据题意列出方程组解答即可;
(2)设购买a个篮球,根据题意列出不等式解答即可.
【解答】解:(1)设购买一个篮球需x元,购买一个足球需y元,根据题意可得:
,
解得:,
答:购买一个篮球,一个足球各需150元,100元;
(2)设购买a个篮球,根据题意可得:0.9×150a+0.85×100(10﹣a)≤1050,
解得:a≤4,
答;最多可购买4个篮球.
21.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点E,F在AB,AC上,且∠EDF=90°.求证:BE=AF;
(2)点M,N分别在直线AD,AC上,且∠BMN=90°.
①如图2,当点M在AD的延长线上时,求证:AB+AN=AM;
②当点M在点A,D之间,且∠AMN=30°时,已知AB=2,直接写出线段AM的长.
【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=∠ADF,进而判断出△BDE≌△ADF,即可得出结论;
(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可判断出AP=AB+AN,再判断出AP=AM,即可得出结论;
②先求出BD,再求出∠BMD=60°,最后用三角函数求出DM,即可得出结论.
【解答】解:(1)∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
∵AD⊥BC,
∴BD=CD,∠BAD=∠CAD=45°,
∴∠CAD=∠B,AD=BD,
∵∠EDF=∠ADC=90°,
∴∠BDE=∠ADF,
∴△BDE≌△ADF(ASA),
∴DE=DF;
(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,
∴∠AMP=90°,
∵∠PAM=45°,
∴∠P=∠PAM=45°,
∴AM=PM,
∵∠BMN=∠AMP=90°,
∴∠BMP=∠AMN,
∵∠DAC=∠P=45°,
∴△AMN≌△PMB(ASA),
∴AN=PB,
∴AP=AB+BP=AB+AN,
在Rt△AMP中,∠AMP=90°,AM=MP,
∴AP=AM,
∴AB+AN=AM;
②在Rt△ABD中,AD=BD=AB=,
∵∠BMN=90°,∠AMN=30°,
∴∠BMD=90°﹣30°=60°,
在Rt△BDM中,DM==,
∴AM=AD﹣DM=﹣.
22.(10分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.
(1)求这个二次函数的表达式;
(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;
(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.
【分析】(1)根据待定系数法,可得函数解析式;
(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;
(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.
【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得
,
解得,
这个二次函数的表达式是y=x2﹣4x+3;
(2)当x=0时,y=3,即点C(0,3),
设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得
,
解这个方程组,得
直线BC的解析是为y=﹣x+3,
过点P作PE∥y轴,
交直线BC于点E(t,﹣t+3),
PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,
∴S△BCP=S△BPE+SCPE=(﹣t2+3t)×3=﹣(t﹣)2+,
∵﹣<0,∴当t=时,S△BCP最大=
(3)M(m,﹣m+3),N(m,m2﹣4m+3)
MN=m2﹣3m,BM=|m﹣3|,
当MN=BM时,①m2﹣3m=(m﹣3),解得m=,
②m2﹣3m=﹣(m﹣3),解得m=﹣
当BN=MN时,∠NBM=∠BMN=45°,
m2﹣4m+3=0,解得m=1或m=3(舍)
当BM=BN时,∠BMN=∠BNM=45°,
﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),
当△BMN是等腰三角形时,m的值为,﹣,1,2.
相关文档
- 2019湖南省怀化市中考数学试卷 解2021-11-1118页
- 2017年浙江省台州市中考数学试卷2021-11-1127页
- 浙江省台州市中考数学试卷(含解析)2021-11-1129页
- 2020年重庆市中考数学试卷(A卷)【含2021-11-1111页
- 2016年山东省烟台市中考数学试卷2021-11-1122页
- 2016年山东省青岛市中考数学试卷2021-11-1120页
- 2019山东省枣庄市中考数学试卷 解2021-11-1128页
- 2019年贵州省铜仁市中考数学试卷2021-11-1127页
- 2019年黑龙江省哈尔滨市中考数学试2021-11-1132页
- 2019四川省攀枝花中考数学试卷(解析2021-11-1116页