• 482.50 KB
  • 2021-11-11 发布

2018年内蒙古包头市中考数学试卷

  • 34页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年内蒙古包头市中考数学试卷 ‎ ‎ 一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项 ‎1.(3分)计算﹣﹣|﹣3|的结果是(  )‎ A.﹣1 B.﹣5 C.1 D.5‎ ‎2.(3分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是(  )‎ A. B. C. D.‎ ‎3.(3分)函数y=中,自变量x的取值范围是(  )‎ A.x≠1 B.x>0 C.x≥1 D.x>1‎ ‎4.(3分)下列事件中,属于不可能事件的是(  )‎ A.某个数的绝对值大于0‎ B.某个数的相反数等于它本身 C.任意一个五边形的外角和等于540°‎ D.长分别为3,4,6的三条线段能围成一个三角形 ‎5.(3分)如果2xa+1y与x2yb﹣1是同类项,那么的值是(  )‎ A. B. C.1 D.3‎ ‎6.(3分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是(  )‎ A.4,1 B.4,2 C.5,1 D.5,2‎ ‎7.(3分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是(  )‎ A.2﹣ B.2﹣ C.4﹣ D.4﹣‎ ‎8.(3分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为(  )‎ A.17.5° B.12.5° C.12° D.10°‎ ‎9.(3分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为(  )‎ A.6 B.5 C.4 D.3‎ ‎10.(3分)已知下列命题:‎ ‎①若a3>b3,则a2>b2;‎ ‎②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;‎ ‎③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;‎ ‎④周长相等的所有等腰直角三角形全等.‎ 其中真命题的个数是(  )‎ A.4个 B.3个 C.2个 D.1个 ‎11.(3分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为(  )‎ A. B. C. D.2‎ ‎12.(3分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为(  )‎ A. B. C. D.‎ ‎ ‎ 二、填空题:本大题共有8小题,每小题3分,共24分.‎ ‎13.(3分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为   .‎ ‎14.(3分)不等式组的非负整数解有   个.‎ ‎15.(3分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是   .‎ ‎16.(3分)化简:÷(﹣1)=   .‎ ‎17.(3分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=   度.‎ ‎18.(3分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为   .‎ ‎19.(3分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为   .‎ ‎20.(3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:‎ ‎①△ACE≌△BCD;‎ ‎②若∠BCD=25°,则∠AED=65°;‎ ‎③DE2=2CF•CA;‎ ‎④若AB=3,AD=2BD,则AF=.‎ 其中正确的结论是   .(填写所有正确结论的序号)‎ ‎ ‎ 三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程 ‎21.(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).‎ 他们的各项成绩如下表所示:‎ 候选人 笔试成绩/分 面试成绩/分 甲 ‎90‎ ‎88‎ 乙 ‎84‎ ‎92‎ 丙 x ‎90‎ 丁 ‎88‎ ‎86‎ ‎(1)直接写出这四名候选人面试成绩的中位数;‎ ‎(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;‎ ‎(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.‎ ‎22.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.‎ ‎(1)求BE的长;‎ ‎(2)求四边形DEBC的面积.‎ ‎(注意:本题中的计算过程和结果均保留根号)‎ ‎23.(10分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.‎ ‎(1)求该商店3月份这种商品的售价是多少元?‎ ‎(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?‎ ‎24.(10分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.‎ ‎(1)求证:∠BCD=∠BEC;‎ ‎(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.‎ ‎25.(12分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.‎ ‎(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;‎ ‎(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;‎ ‎(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.‎ ‎①求的值;‎ ‎②连接BE,△D'MH与△CBE是否相似?请说明理由.‎ ‎26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.‎ ‎(1)求直线l的解析式;‎ ‎(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;‎ ‎(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.‎ ‎ ‎ ‎2018年内蒙古包头市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题:本大题共有12小题,每小题3分,共36分.每小题只有一个正确选项 ‎1.(3分)计算﹣﹣|﹣3|的结果是(  )‎ A.﹣1 B.﹣5 C.1 D.5‎ ‎【分析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.‎ ‎【解答】解:原式=﹣2﹣3=﹣5,‎ 故选:B.‎ ‎ ‎ ‎2.(3分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是(  )‎ A. B. C. D.‎ ‎【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.‎ ‎【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,‎ 所以其主视图为:‎ 故选:C.‎ ‎ ‎ ‎3.(3分)函数y=中,自变量x的取值范围是(  )‎ A.x≠1 B.x>0 C.x≥1 D.x>1‎ ‎【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.‎ ‎【解答】解:由题意得,x﹣1≥0且x﹣1≠0,‎ 解得x>1.‎ 故选:D.‎ ‎ ‎ ‎4.(3分)下列事件中,属于不可能事件的是(  )‎ A.某个数的绝对值大于0‎ B.某个数的相反数等于它本身 C.任意一个五边形的外角和等于540°‎ D.长分别为3,4,6的三条线段能围成一个三角形 ‎【分析】直接利用随机事件以及确定事件的定义分析得出答案.‎ ‎【解答】解:A、某个数的绝对值大于0,是随机事件,故此选项错误;‎ B、某个数的相反数等于它本身,是随机事件,故此选项错误;‎ C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;‎ D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.‎ 故选:C.‎ ‎ ‎ ‎5.(3分)如果2xa+1y与x2yb﹣1是同类项,那么的值是(  )‎ A. B. C.1 D.3‎ ‎【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.‎ ‎【解答】解:∵2xa+1y与x2yb﹣1是同类项,‎ ‎∴a+1=2,b﹣1=1,‎ 解得a=1,b=2.‎ ‎∴=.‎ 故选:A.‎ ‎ ‎ ‎6.(3分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是(  )‎ A.4,1 B.4,2 C.5,1 D.5,2‎ ‎【分析】根据题目中的数据可以直接写出众数,求出相应的平均数和方差,从而可以解答本题.‎ ‎【解答】解:数据1,3,4,4,4,5,5,6的众数是4,‎ ‎,‎ 则=2,‎ 故选:B.‎ ‎ ‎ ‎7.(3分)如图,在△ABC中,AB=2,BC=4,∠ABC=30°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是(  )‎ A.2﹣ B.2﹣ C.4﹣ D.4﹣‎ ‎【分析】过A作AE⊥BC于E,依据AB=2,∠ABC=30°,即可得出AE=AB=1,再根据公式即可得到,阴影部分的面积是×4×1﹣=2﹣.‎ ‎【解答】解:如图,过A作AE⊥BC于E,‎ ‎∵AB=2,∠ABC=30°,‎ ‎∴AE=AB=1,‎ 又∵BC=4,‎ ‎∴阴影部分的面积是×4×1﹣=2﹣,‎ 故选:A.‎ ‎ ‎ ‎8.(3分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为(  )‎ A.17.5° B.12.5° C.12° D.10°‎ ‎【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C可得答案.‎ ‎【解答】解:∵AB=AC,‎ ‎∴∠B=∠C,‎ ‎∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,‎ 又∵∠C+∠BAC=145°,‎ ‎∴∠C=35°,‎ ‎∵∠DAE=90°,AD=AE,‎ ‎∴∠AED=45°,‎ ‎∴∠EDC=∠AED﹣∠C=10°,‎ 故选:D.‎ ‎ ‎ ‎9.(3分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为(  )‎ A.6 B.5 C.4 D.3‎ ‎【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.‎ ‎【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根 ‎∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,‎ ‎∴m≤3.‎ ‎∵m为正整数,且该方程的根都是整数,‎ ‎∴m=2或3.‎ ‎∴2+3=5.‎ 故选:B.‎ ‎ ‎ ‎10.(3分)已知下列命题:‎ ‎①若a3>b3,则a2>b2;‎ ‎②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;‎ ‎③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;‎ ‎④周长相等的所有等腰直角三角形全等.‎ 其中真命题的个数是(  )‎ A.4个 B.3个 C.2个 D.1个 ‎【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.‎ ‎【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;‎ ‎②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;‎ ‎③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;‎ ‎④周长相等的所有等腰直角三角形全等,故正确.‎ 故选:C.‎ ‎ ‎ ‎11.(3分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为(  )‎ A. B. C. D.2‎ ‎【分析】利用直线l1:y=﹣x+1,即可得到A(2,0)B(0,1),AB==3,过C作CD⊥OA于D,依据CD∥BO,可得OD=AO=,CD=BO=,进而得到C(,),代入直线l2:y=kx,可得k=.‎ ‎【解答】解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,‎ 即A(2,0)B(0,1),‎ ‎∴Rt△AOB中,AB==3,‎ 如图,过C作CD⊥OA于D,‎ ‎∵∠BOC=∠BCO,‎ ‎∴CB=BO=1,AC=2,‎ ‎∵CD∥BO,‎ ‎∴OD=AO=,CD=BO=,‎ 即C(,),‎ 把C(,)代入直线l2:y=kx,可得 ‎=k,‎ 即k=,‎ 故选:B.‎ ‎ ‎ ‎12.(3分)如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为(  )‎ A. B. C. D.‎ ‎【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.‎ ‎【解答】解:如图,‎ 在Rt△BDC中,BC=4,∠DBC=30°,‎ ‎∴BD=2,‎ 连接DE,‎ ‎∵∠BDC=90°,点D是BC中点,‎ ‎∴DE=BE=CEBC=2,‎ ‎∵∠DCB=30°,‎ ‎∴∠BDE=∠DBC=30°,‎ ‎∵BD平分∠ABC,‎ ‎∴∠ABD=∠DBC,‎ ‎∴∠ABD=∠BDE,‎ ‎∴DE∥AB,‎ ‎∴△DEF∽△BAF,‎ ‎∴,‎ 在Rt△ABD中,∠ABD=30°,BD=2,‎ ‎∴AB=3,‎ ‎∴,‎ ‎∴,‎ ‎∴DF=BD=×2=,‎ 故选:D.‎ ‎ ‎ 二、填空题:本大题共有8小题,每小题3分,共24分.‎ ‎13.(3分)若a﹣3b=2,3a﹣b=6,则b﹣a的值为 ﹣2 .‎ ‎【分析】将两方程相加可得4a﹣4b=8,再两边都除以2得出a﹣b的值,继而由相反数定义或等式的性质即可得出答案.‎ ‎【解答】解:由题意知,‎ ‎①+②,得:4a﹣4b=8,‎ 则a﹣b=2,‎ ‎∴b﹣a=﹣2,‎ 故答案为:﹣2.‎ ‎ ‎ ‎14.(3分)不等式组的非负整数解有 4 个.‎ ‎【分析】首先正确解不等式组,根据它的解集写出其非负整数解.‎ ‎【解答】解:解不等式2x+7>3(x+1),得:x<4,‎ 解不等式x﹣≤,得:x≤8,‎ 则不等式组的解集为x<4,‎ 所以该不等式组的非负整数解为0、1、2、3这4个,‎ 故答案为:4.‎ ‎ ‎ ‎15.(3分)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是  .‎ ‎【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.‎ ‎【解答】解:列表如下:‎ ‎﹣2‎ ‎﹣1‎ ‎1‎ ‎2‎ ‎﹣2‎ ‎2‎ ‎﹣2‎ ‎﹣4‎ ‎﹣1‎ ‎2‎ ‎﹣1‎ ‎﹣2‎ ‎1‎ ‎﹣2‎ ‎﹣1‎ ‎2‎ ‎2‎ ‎﹣4‎ ‎﹣2‎ ‎2‎ 由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,‎ ‎∴积为大于﹣4小于2的概率为=,‎ 故答案为:.‎ ‎ ‎ ‎16.(3分)化简:÷(﹣1)= ﹣ .‎ ‎【分析】根据分式混合运算顺序和运算法则计算可得.‎ ‎【解答】解:原式=÷(﹣)‎ ‎=÷‎ ‎=•‎ ‎=﹣,‎ 故答案为:﹣.‎ ‎ ‎ ‎17.(3分)如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC= 115 度.‎ ‎【分析】连接OC,根据切线的性质求出∠DCO,求出∠COB,即可求出答案.‎ ‎【解答】解:‎ 连接OC,‎ ‎∵DC切⊙O于C,‎ ‎∴∠DCO=90°,‎ ‎∵∠D=40°,‎ ‎∴∠COB=∠D+∠DCO=130°,‎ ‎∴的度数是130°,‎ ‎∴的度数是360°﹣130°=230°,‎ ‎∴∠BEC==115°,‎ 故答案为:115.‎ ‎ ‎ ‎18.(3分)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为  .‎ ‎【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF=1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.‎ ‎【解答】解:∵3AE=2EB,‎ ‎∴可设AE=2a、BE=3a,‎ ‎∵EF∥BC,‎ ‎∴△AEF∽△ABC,‎ ‎∴=()2=()2=,‎ ‎∵S△AEF=1,‎ ‎∴S△ABC=,‎ ‎∵四边形ABCD是平行四边形,‎ ‎∴S△ADC=S△ABC=,‎ ‎∵EF∥BC,‎ ‎∴===,‎ ‎∴==,‎ ‎∴S△ADF=S△ADC=×=,‎ 故答案为:.‎ ‎ ‎ ‎19.(3分)以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为 3 .‎ ‎【分析】由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=3,根据OA=OB可得答案.‎ ‎【解答】解:如图,‎ ‎∵双曲线y=(x>0)经过点D,‎ ‎∴S△ODF=k=,‎ 则S△AOB=2S△ODF=,即OA•BE=,‎ ‎∴OA•BE=3,‎ ‎∵四边形ABCD是矩形,‎ ‎∴OA=OB,‎ ‎∴OB•BE=3,‎ 故答案为:3.‎ ‎ ‎ ‎20.(3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:‎ ‎①△ACE≌△BCD;‎ ‎②若∠BCD=25°,则∠AED=65°;‎ ‎③DE2=2CF•CA;‎ ‎④若AB=3,AD=2BD,则AF=.‎ 其中正确的结论是 ①②③ .(填写所有正确结论的序号)‎ ‎【分析】先判断出∠BCD=∠ACE,即可判断出①正确;‎ 先求出∠BDC=110°,进而得出∠AEC=110°,即可判断出②正确;‎ 先判断出∠CAE=∠CEF,进而得出△CEF∽△CAE,即可得出CE2=CF•AC,最后用勾股定理即可得出③正确;‎ 先求出BC=AC=3,再求出BD=,进而求出CE=CD=,求出CF=,即可判断出④错误.‎ ‎【解答】解:∵∠ACB=90°,‎ 由旋转知,CD=CE,∠DCE=90°=∠ACB,‎ ‎∴∠BCD=∠ACE,‎ 在△BCD和△ACE中,,‎ ‎∴△BCD≌△ACE,故①正确;‎ ‎∵∠ACB=90°,BC=AC,‎ ‎∴∠B=45°‎ ‎∵∠BCD=25°,‎ ‎∴∠BDC=180°﹣45°﹣25°=110°,‎ ‎∵△BCD≌△ACE,‎ ‎∴∠AEC=∠BDC=110°,‎ ‎∵∠DCE=90°,CD=CE,‎ ‎∴∠CED=45°,‎ 则∠AED=∠AEC﹣∠CED=65°,故②正确;‎ ‎∵△BCD≌△ACE,‎ ‎∴∠CAE=∠CBD=45°=∠CEF,‎ ‎∵∠ECF=∠ACE,‎ ‎∴△CEF∽△CAE,‎ ‎∴,‎ ‎∴CE2=CF•AC,‎ 在等腰直角三角形CDE中,DE2=2CE2=2CF•AC,故③正确;‎ 如图,过点D作DG⊥BC于G,‎ ‎∵AB=3,‎ ‎∴AC=BC=3,‎ ‎∵AD=2BD,‎ ‎∴BD=AB=,‎ ‎∴DG=BG=1,‎ ‎∴CG=BC﹣BG=3﹣1=2,‎ 在Rt△CDG中,根据勾股定理得,CD==,‎ ‎∵△BCD≌△ACE,‎ ‎∴CE=,‎ ‎∵CE2=CF•AC,‎ ‎∴CF==,‎ ‎∴AF=AC﹣CF=3﹣=,故④错误,‎ 故答案为:①②③.‎ ‎ ‎ 三、解答题:本大题共有6小题,共60分.请写出必要的文字说明、计算过程或推理过程 ‎21.(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).‎ 他们的各项成绩如下表所示:‎ 候选人 笔试成绩/分 面试成绩/分 甲 ‎90‎ ‎88‎ 乙 ‎84‎ ‎92‎ 丙 x ‎90‎ 丁 ‎88‎ ‎86‎ ‎(1)直接写出这四名候选人面试成绩的中位数;‎ ‎(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;‎ ‎(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.‎ ‎【分析】(1)根据中位数的概念计算;‎ ‎(2)根据题意列出方程,解方程即可;‎ ‎(3)根据加权平均数的计算公式分别求出余三名候选人的综合成绩,比较即可.‎ ‎【解答】解:(1)这四名候选人面试成绩的中位数为:=89(分);‎ ‎(2)由题意得,x×60%+90×40%=87.6‎ 解得,x=86,‎ 答:表中x的值为86;‎ ‎(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分),‎ 乙候选人的综合成绩为:84×60%+92×40%=87.2(分),‎ 丁候选人的综合成绩为:88×60%+86×40%=87.2(分),‎ ‎∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.‎ ‎ ‎ ‎22.(8分)如图,在四边形ABCD中,AD∥BC,∠‎ ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.‎ ‎(1)求BE的长;‎ ‎(2)求四边形DEBC的面积.‎ ‎(注意:本题中的计算过程和结果均保留根号)‎ ‎【分析】(1)解直角三角形求出AD、AE即可解决问题;‎ ‎(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;‎ ‎【解答】解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,‎ ‎∴∠BAD=90°,‎ ‎∵AB=AD,‎ ‎∴∠ABD=∠ADB=45°,‎ ‎∵∠BDE=15°,‎ ‎∴∠ADE=30°,‎ 在Rt△ADE中,AE=DE×sin30=2,AD=DE•cos30°=6,‎ ‎∴AB=AD=6,‎ ‎∴BE=6﹣2.‎ ‎(2)作DF⊥BC于F.则四边形ABFD是矩形,‎ ‎∴BF=AD=6,DF=AB=6,‎ 在Rt△DFC中,FC==4,‎ ‎∴BC=6+4,‎ ‎∴S四边形DEBC=S△DEB+S△BCD=×(6﹣2)×6+(6+4)×6=36+6.‎ ‎ ‎ ‎23.(10分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.‎ ‎(1)求该商店3月份这种商品的售价是多少元?‎ ‎(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?‎ ‎【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;‎ ‎(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.‎ ‎【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,‎ 根据题意得:=﹣30,‎ 解得:x=40,‎ 经检验,x=40是原分式方程的解.‎ 答:该商店3月份这种商品的售价是40元.‎ ‎(2)设该商品的进价为y元,‎ 根据题意得:(40﹣a)×=900,‎ 解得:a=25,‎ ‎∴(40×0.9﹣25)×=990(元).‎ 答:该商店4月份销售这种商品的利润是990元.‎ ‎ ‎ ‎24.(10分)如图,在Rt△ACB中,∠ACB=90°,以点A为圆心,AC长为半径的圆交AB于点D,BA的延长线交⊙A于点E,连接CE,CD,F是⊙‎ A上一点,点F与点C位于BE两侧,且∠FAB=∠ABC,连接BF.‎ ‎(1)求证:∠BCD=∠BEC;‎ ‎(2)若BC=2,BD=1,求CE的长及sin∠ABF的值.‎ ‎【分析】(1)先利用等角的余角相等即可得出结论;‎ ‎(2)先判断出△BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判断出△AFM∽△BAC,进而判断出四边形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出结论.‎ ‎【解答】解:(1)∵∠ACB=90°,‎ ‎∴∠BCD+∠ACD=90°,‎ ‎∵DE是⊙A的直径,‎ ‎∴∠DCE=90°,‎ ‎∴∠BEC+∠CDE=90°,‎ ‎∵AD=AC,‎ ‎∴∠CDE=∠ACD,‎ ‎∴∠BCD=∠BEC,‎ ‎(2)∵∠BCD=∠BEC,∠EBC=∠EBC,‎ ‎∴△BDC∽△BCE,‎ ‎∴,‎ ‎∵BC=2,BD=1,‎ ‎∴BE=4,EC=2CD,‎ ‎∴DE=BE﹣BD=3,‎ 在Rt△DCE中,DE2=CD2+CE2=9,‎ ‎∴CD=,CE=,‎ 过点F作FM⊥AB于M,‎ ‎∵∠FAB=∠ABC,∠FMA=∠ACB=90°,‎ ‎∴△AFM∽△BAC,‎ ‎∴,‎ ‎∵DE=3,‎ ‎∴AD=AF=AC=,AB=,‎ ‎∴FM=,‎ 过点F作FN⊥BC于N,‎ ‎∴∠FNC=90°,‎ ‎∵∠FAB=∠ABC,‎ ‎∴FA∥BC,‎ ‎∴∠FAC=∠ACB=90°,‎ ‎∴四边形FNCA是矩形,‎ ‎∴FN=AC=,NC=AF=,‎ ‎∴BN=,‎ 在Rt△FBN中,BF=,‎ 在Rt△FBM中,sin∠ABF=.‎ ‎ ‎ ‎25.(12分)如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.‎ ‎(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;‎ ‎(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;‎ ‎(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.‎ ‎①求的值;‎ ‎②连接BE,△D'MH与△CBE是否相似?请说明理由.‎ ‎【分析】(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;‎ ‎(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出BK=GK=,最后用勾股定理即可得出结论;‎ ‎(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,的粗,△ED'M∽△ECH,得出,进而得出,即可得出结论;‎ ‎②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.‎ ‎【解答】解:(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°‎ 在Rt△ABD中,根据勾股定理得,BD=,‎ ‎∵O是BD中点,‎ ‎∴OD=OB=OA=,‎ ‎∴∠OAD=∠ODA,‎ ‎∵OE=DE,‎ ‎∴∠EOD=∠ODE,‎ ‎∴∠EOD=∠ODE=∠OAD,‎ ‎∴△ODE∽△ADO,‎ ‎∴,∴DO2=DE•DA,‎ ‎∴设AE=x,‎ ‎∴DE=5﹣x,‎ ‎∴()2=5(5﹣x),‎ ‎∴x=,‎ 即:AE=;‎ ‎(2)如图2,在矩形ABCD中,‎ ‎∵BE平分∠ABC,‎ ‎∴∠ABE=∠EBC=45°,‎ ‎∵AD∥BC,‎ ‎∴∠AEB=∠EBC,‎ ‎∴∠ABE=∠AEB,‎ ‎∴AE=AB=3,‎ ‎∴AE=CD=3,‎ ‎∵EF⊥EC,‎ ‎∴∠FEC=90°,‎ ‎∴∠AEF+∠CED=90°,‎ ‎∵∠A=90°,‎ ‎∴∠AEF+∠AFE=90°,‎ ‎∴∠CED=∠AFE,‎ ‎∵∠D=∠A=90°,‎ ‎∴△AEF≌△DCE,‎ ‎∴AF=DE=2,‎ ‎∴BF=AB﹣AF=1,‎ 过点G作GK⊥BC于K,‎ ‎∴∠EBC=∠BGK=45°,‎ ‎∴BK=GK,∠ABC=∠GKC=90°,‎ ‎∵∠KCG=∠BCF,‎ ‎∴△CKG∽△CBF,‎ ‎∴,‎ 设BK=GK=y,‎ ‎∴CK=5﹣y,‎ ‎∴y=,‎ ‎∴BK=GK=,‎ 在Rt△GKB中,BG=;‎ ‎(3)①在矩形ABCD中,∠D=90°,‎ ‎∵AE=1,AD=5,‎ ‎∴DE=4,‎ ‎∵DC=3,‎ ‎∴EC=5,‎ 由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,‎ ‎∴D'C=1,‎ 设D'H=DH=z,‎ ‎∴HC=3﹣z,‎ 根据勾股定理得,(3﹣z)2=1+z2,‎ ‎∴z=,‎ ‎∴DH=,CH=,‎ ‎∵D'N⊥AD,‎ ‎∴∠AND'=∠D=90°,‎ ‎∴D'N∥DC,‎ ‎∴△EMN∽△EHD,‎ ‎∴,‎ ‎∵D'N∥DC,‎ ‎∴∠ED'M=∠ECH,‎ ‎∵∠MED'=∠HEC,‎ ‎∴△ED'M∽△ECH,‎ ‎∴,‎ ‎∴,‎ ‎∴,‎ ‎∴;‎ ‎②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,‎ ‎∴∠MD'H+∠ED'N=90°,‎ ‎∵∠END'=90°,‎ ‎∴∠ED'N+∠NED'=90°,‎ ‎∴∠MD'H=∠NED',‎ ‎∵D'N∥DC,‎ ‎∴∠EHD=∠D'MH,‎ ‎∴∠EHD'=∠D'MH,‎ ‎∴D'M=D'H,‎ ‎∵AD∥BC,‎ ‎∴∠NED'=∠ECB,‎ ‎∴∠MD'H=∠ECB,‎ ‎∵CE=CB=5,‎ ‎∴,‎ ‎∴△D'MH∽△CBE.‎ ‎ ‎ ‎26.(12分)如图,在平面直角坐标系中,已知抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.‎ ‎(1)求直线l的解析式;‎ ‎(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;‎ ‎(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.‎ ‎【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;‎ ‎(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;‎ ‎(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.‎ ‎【解答】解:(1)∵抛物线y=x2+x﹣2,‎ ‎∴当y=0时,得x1=1,x2=﹣4,当x=0时,y=﹣2,‎ ‎∵抛物线y=x2+x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,‎ ‎∴点A的坐标为(﹣4,0),点B(1,0),点C(0,﹣2),‎ ‎∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,‎ ‎,得,‎ 即直线l的函数解析式为y=;‎ ‎(2)直线ED与x轴交于点F,如右图1所示,‎ 由(1)可得,‎ AO=4,OC=2,∠AOC=90°,‎ ‎∴AC=2,‎ ‎∴OD=,‎ ‎∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,‎ ‎∴△AOD∽△ACO,‎ ‎∴,‎ 即,得AD=,‎ ‎∵EF⊥x轴,∠ADC=90°,‎ ‎∴EF∥OC,‎ ‎∴△ADF∽△ACO,‎ ‎∴,‎ 解得,AF=,DF=,‎ ‎∴OF=4﹣=,‎ ‎∴m=﹣,‎ 当m=﹣时,y=×()2+×(﹣)﹣2=﹣,‎ ‎∴EF=,‎ ‎∴DE=EF﹣FD=;‎ ‎(3)存在点P,使∠BAP=∠BCO﹣∠BAG,‎ 理由:作GM⊥AC于点M,作PN⊥x轴于点N,如右图2所示,‎ ‎∵点A(﹣4,0),点B(1,0),点C(0,﹣2),‎ ‎∴OA=4,OB=1,OC=2,‎ ‎∴tan∠OAC=,tan∠OCB=,AC=2,‎ ‎∴∠OAC=∠OCB,‎ ‎∵∠BAP=∠BCO﹣∠BAG,∠GAM=∠OAC﹣∠BAG,‎ ‎∴∠BAP=∠GAM,‎ ‎∵点G(0,﹣1),AC=2,OA=4,‎ ‎∴OG=1,GC=1,‎ ‎∴AG=,,即,‎ 解得,GM=,‎ ‎∴AM===,‎ ‎∴tan∠GAM==,‎ ‎∴tan∠PAN=,‎ 设点P的坐标为(n,n2+n﹣2),‎ ‎∴AN=4+n,PN=n2+n﹣2,‎ ‎∴,‎ 解得,n1=,n2=﹣4(舍去),‎ 当n=时,n2+n﹣2=,‎ ‎∴点P的坐标为(,),‎ 即存在点P(,),使∠BAP=∠BCO﹣∠BAG.‎ ‎ ‎