- 1.41 MB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年中考试卷分类---函数与几何图形
1. 如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是( D )
2. 如图,已知正三角形ABC的边长为1,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数的图象大致是( C )
3. (潍坊)如图,圆B切y轴于原点O,过定点作圆B切线交圆于点P.已知,抛物线C经过A,P两点.(1)求圆B的半径;(2)若抛物线C经过点B,求其解析式;(3)投抛物线交y轴于点M,若三角形APM为直角三角形,求点M的坐标.
4. (威海)如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积; (2)求四边形MEFN面积的最大值. (3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.
解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H.
∵ AB∥CD, ∴ DG=CH,DG∥CH.
∴ 四边形DGHC为矩形,GH=CD=1.
C
D
A
B
E
F
N
M
G
H
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴ △AGD≌△BHC(HL).
∴ AG=BH==3. ………2分
∵ 在Rt△AGD中,AG=3,AD=5,
∴ DG=4. ∴ .
C
D
A
B
E
F
N
M
G
H
(2)∵ MN∥AB,ME⊥AB,NF⊥AB,
∴ ME=NF,ME∥NF. ∴ 四边形MEFN为矩形.
∵ AB∥CD,AD=BC, ∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°,
∴ △MEA≌△NFB(AAS).∴ AE=BF.
设AE=x,则EF=7-2x.
∵ ∠A=∠A,∠MEA=∠DGA=90°,
∴ △MEA∽△DGA.∴ .∴ ME=.
∴ .
当x=时,ME=<4,∴四边形MEFN面积的最大值为.
(3)能. 由(2)可知,设AE=x,则EF=7-2x,ME=.
若四边形MEFN为正方形,则ME=EF. 即 7-2x.解,得 .
∴ EF=<4.
∴ 四边形MEFN能为正方形,其面积为.
1. (青岛)已知:如图①,在RtΔABC中,∠C=900,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(01的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S△QNM,△QNR的面积S△QNR,求S△QNM:S△QNR的值.
2. (重庆)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0)。(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ。当ΔCQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。
3. (东营)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.(1)用含x的代数式表示△MNP的面积S;(2)当x为何值时,⊙O与直线BC相切?(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C.
A
B
C
M
N
P
图 1
O
∴ △AMN ∽ △ABC.
∴ ,即.
∴ AN=x.
∴ =.(0<<4)
A
B
C
M
N
D
图 2
O
Q
(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =MN.
在Rt△ABC中,BC ==5.
由(1)知 △AMN ∽ △ABC.
∴ ,即.
∴ ,∴ .
过M点作MQ⊥BC 于Q,则. 在Rt△BMQ与Rt△BCA中,∠B是公共角,
∴ △BMQ∽△BCA.∴ .∴ ,.
∴ x=. ∴ 当x=时,⊙O与直线BC相切.
A
B
C
M
N
P
图 3
O
(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.
∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC.
∴ △AMO ∽ △ABP.
∴ . AM=MB=2.
故以下分两种情况讨论:
① 当0<≤2时,.
∴ 当=2时,
② 当2<<4时,设PM,PN分别交BC于E,F.
A
B
C
M
N
P
图 4
O
E
F
∵ 四边形AMPN是矩形,
∴ PN∥AM,PN=AM=x.
又∵ MN∥BC,
∴ 四边形MBFN是平行四边形.
∴ FN=BM=4-x.
∴ .
又△PEF ∽ △ACB.
∴ .∴=.
当2<<4时,.
∴ 当时,满足2<<4,.
综上所述,当时,值最大,最大值是2.
1. (上海)正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.(1)如图8,当CE=时,求线段BG的长;(2)当点O在线段BC上时,设,BO=y,求y关于x的函数解析式;(3)当CE=2ED时,求线段BO的长.
解:(1)在边长为2的正方形中,,得,
又∵,即,∴,得.
∵,∴;
(2)当点在线段上时,过点作,垂足为点,
∵为的角平分线,,∴.
在正方形中,,∴.
∵,∴.
又∵,,得.
∵在Rt△ABG中,,,,
∴.
∵,∴.
∵,即,得,;
(3)当时,
①当点在线段上时,即,由(2)得;
②当点在线段延长线上时,
,,在 Rt△ADE中,.
设交线段于点,∵是的平分线,即,
又∵,∴.∴.
∴.∴.
∵,∴,即,得.
2. (中山)如图11,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线
l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米。(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值。
(1)t=4时,Q与B重合,P与D重合,
重合部分是=
1. 如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1) 求抛物线的解析式. (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.
(1)解法一:设抛物线的解析式为y = a (x +3 )(x - 4)
因为B(0,4)在抛物线上,所以4 = a ( 0 + 3 ) ( 0 - 4 )解得a= -1/3
所以抛物线解析式为
解法二:设抛物线的解析式为,
依题意得:c=4且 解得
所以 所求的抛物线的解析式为
(2)连接DQ,在Rt△AOB中,
所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 – 5 = 2
因为BD垂直平分PQ,所以PD=QD,PQ⊥BD,所以∠PDB=∠QDB
因为AD=AB,所以∠ABD=∠ADB,∠ABD=∠QDB,所以DQ∥AB
所以∠CQD=∠CBA.∠CDQ=∠CAB,所以△CDQ∽ △CAB
即
所以AP=AD – DP = AD – DQ=5 –= ,
所以t的值是
(3)答对称轴上存在一点M,使MQ+MC的值最小
理由:因为抛物线的对称轴为
所以A(- 3,0),C(4,0)两点关于直线对称
连接AQ交直线于点M,则MQ+MC的值最小
过点Q作QE⊥x轴,于E,所以∠QED=∠BOA=900
DQ∥AB,∠ BAO=∠QDE, △DQE ∽△ABO
即
所以QE=,DE=,所以OE = OD + DE=2+=,所以Q(,)
设直线AQ的解析式为
则 由此得
所以直线AQ的解析式为 联立
由此得 所以M
则:在对称轴上存在点M,使MQ+MC的值最小.
1. (龙岩)如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)求AD的长;(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.
(1)解法一:如图25-1
过A作AE⊥CD,垂足为E .
依题意,DE=. …………………………2分
在Rt△ADE中,AD=. ………5分
图25-1
解法二:如图25-2
过点A作AE∥BC交CD于点E,则CE=AB=4 . …2分
∠AED=∠C=60°.
又∵∠D=∠C=60°,
∴△AED是等边三角形 .
∴AD=DE=9-4=5 . …………………………………5分
(2)解:如图25-1
图25-2
∵CP=x,h为PD边上的高,依题意,△PDQ的面积S可表示为:
S=PD·h ………………………………………6分
=(9-x)·x·sin60°
=(9x-x2)
=-(x-)2+. ………………………………………………… 8分
由题意,知0≤x≤5 . ……………………………………………………… 9分
当x=时(满足0≤x≤5),S最大值=. …………………………… 10分
(3)证法一:如图25-3
假设存在满足条件的点M,则PD必须等于DQ . ………………………… 11分
于是9-x=x,x=.
此时,点P、Q的位置如图25-3所示,连QP .
△PDQ恰为等边三角形 .
过点Q作QM∥DC,交BC于M,点M即为所求.
连结MP,以下证明四边形PDQM是菱形 .
图25-3
易证△MCP≌△QDP,∴∠D=∠3 . MP=PD
∴MP∥QD , ∴四边形PDQM是平行四边形 .
又MP=PD , ∴四边形PDQM是菱形 . ………………………………… 13分
所以存在满足条件的点M,且BM=BC-MC=5-=. ………………… 14分
[注] 本题仅回答存在,给1分.
证法二:如图25-4
假设存在满足条件的点M,则PD必须等于DQ . ………………………… 11分
于是9-x=x,x=.
此时,点P、Q的位置如图25-4所示,△PDQ恰为等边三角形 .
过点D作DO⊥PQ于点O,延长DO交BC于点M,连结PM、QM,则DM垂直平分PQ,∴ MP=MQ .
易知∠1=∠C .
∴PQ∥BC .
又∵DO⊥PQ, ∴MC⊥MD
图25-4
∴MP= CD=PD
即MP=PD=DQ=QM
∴四边形PDQM是菱形 ……………………………………………………… 13分
所以存在满足条件的点M,且BM=BC-MC=5-= ……………… 14分
[注] 本题仅回答存在,给1分.
1. (南平)如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(其中m>0),在BC边上选取适当的点E和点F,将ΔOCE沿OE翻折,得到ΔOGE;再将ΔABF沿AF翻折,恰好使点B与点G重合,得到ΔAGF,且∠OGA=900.(1)求m的值;(2)求过点O,G,A的抛物线的解析式和对称轴;(3)在抛物线的对称轴上是否存在点P,使得ΔOPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).
(1)解法一:,
由题意可知,, 2分
, 3分
.又, 4分
解法二:,
由题意可知,, 2分
, 3分
4分
(2)解法一:过作直线轴于,
则,,故. 5分
又由(1)知,
设过三点的抛物线解析式为
抛物线过原点,. 6分
又抛物线过两点, 解得
所求抛物线为 8分
它的对称轴为. 9分
解法二:过作直线轴于,
则,,故. 5分
又由(1)知,点关于直线对称,点为抛物线的顶点 6分
于是可设过三点的抛物线解析式为
抛物线过点,,解得
所求抛物线为 8分
它的对称轴为. 9分
(3)答:存在 10分
满足条件的点有,,,.
1. (宁德)如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0