- 779.06 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020~2021学年度第一学期期中学情调研
九年级数学
注意事项:
1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.
4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.下列方程中,是关于x的一元二次方程的是
A.2x+y=2 B.x+y2=0 C.ax2+bx+c=0 D.2x-x2=1
2.若圆弧的半径为3,所对的圆心角为60°,则弧长为
A. π B.π C.π D.3π
3.反映一组数据变化范围的是
A.极差 B.方差 C.众数 D.平均数
4.下列方程中,两个实数根的和为0的是
A.x2-x=0 B.x2+2x=0 C.x2-1=0 D.x2-2x+1=0
5.某校九年级(1)班部分学生上学路上所花的时间如图所示.
设他们上学路上所花时间的平均数为a,中位数为b,众数
为c,则有
A.b>a>c B.c>a>b
C.a>b>c D.b>c>a
6.如图,AC为半圆的直径,弦AB=3,∠BAC=30°,点E、F
分别为AB和AC上的动点,则BF+EF的最小值为
A. B.
九年级数学试卷第 12 页 共 6 页
C.3 D.+
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题
卡相应位置上)
7.方程x2-4=0的解是 ▲ .
8.若⊙O的半径为3cm,点A与圆心O的距离为4cm,则点A与⊙O的位置关系是 ▲ .
9.若关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k= ▲ .
10.某招聘考试分笔试和面试两项,笔试按60%、面试按40%计算总成绩.若李明笔试成绩为90分,
面试成绩为85分,则李明的总成绩是 ▲ 分.
11.将方程x2+6x-3=0化为(x+h)2=k的形式是 ▲ .
12.如图,△ABC内接于⊙O,∠A=64°,则∠OBC= ▲ °.
13.如图,在正八边形ABCDEFGH中,连接AE、AG,则∠EAG= ▲ °.
14.已知圆锥的母线长为8cm,侧面展开图的圆心角为45°,则该圆锥的侧面积为 ▲ cm2.
15.已知⊙O的半径为6,弦AB长为6,则AB所对的圆周角的度数为 ▲ °.
16.如图,在四边形ABCD中,∠BAD=∠CDA=90°,CD=2AB,过A、B、D三点的⊙O分别交
BC、CD于点E、F.下列结论:①DF=CF;②=;③AE=AD.其中所有正确结论的序
号是 ▲ .
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明
过程或演算步骤)
17.(8分)解下列方程:
(1)x2-10x+16=0
; (2)x(x-3)=6-2x.
18.(8分)已知关于x的方程x2-mx+(m-2)=0.
(1)求证:不论m为何值,该方程总有两个不相等的实数根;
九年级数学试卷第 12 页 共 6 页
(2)若方程有一个根是2,求m的值以及方程的另一个根.
19.(8分)甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):
第1次
第2次
第3次
第4次
第5次
甲
86
83
90
80
86
乙
78
82
84
89
92
(1)完成下表:
中位数
平均数
方差
甲
▲
85
▲
乙
84
85
24.8
(2)请运用所学的统计知识,从两个不同角度评价甲、乙两人的数学成绩.
20.(6分)已知某企业2020年3月份的口罩产量是500万只,4月份的产量比3月份有所增长.5月份
新冠疫情有所好转,口罩产量降为420万只.若两次产量变化的百分率相同,求这个百分率.
21.(8分)如图,在⊙O中,AB是⊙O的直径,CD是⊙O的弦,CD⊥AB,垂足为P.过点D作⊙O的
切线与AB的延长线相交于点E.
(1)若∠ABC=56°,求∠E的度数.
(2)若CD=6,BP=2,求⊙O的半径.
九年级数学试卷第 12 页 共 6 页
22.(8分)如图,有一道长为10m的墙,计划用总长为54m的篱笆,靠墙围成由六个小长方形组成的
矩形花圃ABCD.若花圃ABCD面积为72m2,求AB的长.
23.(6分)如图,在⊙O中,C是的中点,∠C=∠AOB.
求证:四边形OACB是菱形.
24.(8分)如图,PM是⊙O的切线,切点是A.点B、C、D是⊙O上的点,PA=PB.
(1)求证PB是⊙O的切线;
(2)若∠C=92°,∠MAD=40°,则∠P= ▲ °.
九年级数学试卷第 12 页 共 6 页
25.(8分)某商店经销的某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;
售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么
该商品每件售价多少元?
26.(10分)如图,在矩形ABCD中,AB=4,BC=6.点E为CD边上的一个动点(不与C、D重合),
⊙O是△BCE的外接圆.
(1)若CE=2,⊙O交AD于点F、G,求FG的长度.
(第26题)
(2)若CE的长度为m,⊙O与AD的位置关系随着m的值变化而变化,试探索⊙O与AD的位置关系及对应的m的取值范围.
九年级数学试卷第 12 页 共 6 页
27.(10分)
(1)如图①,AB是⊙O的直径,点C、D在⊙O上,且BC=BD,CD=AD.
求证∠ADC=2∠BDC.
(2)如图②,AB是⊙O的直径,点C在⊙O上.若点D是平面内任意一点,且满足AD=CD,
∠ADC=2∠BDC .
①利用直尺和圆规在图②中作出所有满足条件的点D(保留作图痕迹,不写作法).
②若AB=4,BC长度为m(0<m<4),点D的个数随着m的值变化而变化,直接写出点D的个数及对应的m的取值范围.
九年级数学试卷第 12 页 共 6 页
九年级数学试卷第 12 页 共 6 页
2020~2021学年度第一学期期中学情分析样题
九年级数学参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(每小题2分,共计12分)
题号
1
2
3
4
5
6
答案
D
B
A
C
A
B
二、填空题(每小题2分,共计20分)
7.x=±2
8.圆外
9.4
10.88
11.(x+3)2=12
12.26
13.45
14.8π
15.45或135
16.①③
三、解答题(本大题共11小题,共计88分)
17.(本题8分)
(1)解:x2-10x+25=9, 1分
(x-5)2=9, 2分
x-5=±3,
x1=8,x2=-2. 4分
(2)解:x(x-3)=-2(x-3), ……………………………………………… 5分 x(x-3)+2(x-3)=0,
(x-3)( x+2)=0, 6分
x1=3,x2=-2. 8分
18.(本题8分)
(1)证明:∵a=1,b=-m,c= m-2 1分
∴b 2-4ac=(-m )2-4×1×8(m-2)=m 2-4m+8=(m-2)2+4 2分
∵(m-2)2≥0,∴(m-2)2+4>0 3分
∴不论m为何值,该方程都有两个不相等的实数根. 4分
(2)根据题意:22-2 m+(m-2)=0,∴m=2. 6分
则x2-2x=0,∴x1=0,x2=2.
∴m的值为2,另一个根为0. 8分
19.(本题8分)
(1)85,11.2 4分
(2)数据的集中程度:①从中位数看,甲的中位数略大于乙的中位数,说明甲的数学成绩略好于乙;
数据的离散程度:②从方差看,甲的方差小于乙的方差,且两人的平均成绩相同,说明甲的成绩比乙更稳定;
数据的变化趋势:③从两人成绩的变化趋势看,乙的成绩在逐渐上升,说明乙的成绩进步较大。 8分
(注:写出其中两个即可,其它情况酌情赋分)
20.(本题6分)
解:设这个百分率是x.
根据题意,得500 (1+x)(1-x)=420. 4分
解这个方程,得x1=0.4,x2=-0.4(不合题意,舍去).
答:这个百分率是40%. 6分
九年级数学试卷第 12 页 共 6 页
21.(本题8分)
(1)解:连接OD.
∵ 在⊙O中,弦AB⊥CD,垂足为P,
∴∠CPB=90°.
∵∠ABC=56°,
∴∠PCB=90°-56°=34°, 1分
∴∠EOD=2∠CPB=68°. 2分
∵DE是⊙O的切线.
∴∠ODE=90°, 3分
在Rt△ODE中,∠E=90°-68°=22°. 4分
(2)∵ 在⊙O中,弦AB⊥CD,垂足为P,
∴ CP=DP=CD=3. 5分
设⊙O的半径为r.
在Rt△ODP中,PD2+OP2=OD2,
即32+(r-2) 2=r 2. 7分
解方程,得r=.
所以⊙O的半径为. 8分
22.(本题8分)
解:设AB的长是xm,则BC的长是(18-x)m.
根据题意,得x (18-x)=72. 5分
解这个方程,得x1=6,x2=12 7分
当x=6时,18-x=12>10(不合题意,舍去).
当x=12时,18-x=6符合题意.
答:AB的长是12m. 8分
23.(本题6分)
证明:如图,连接OC.
∵C是的中点,
∴=,∴ AC=BC, 1分
∵在△AOC和△BOC中,AC=BC,OA=OB,OC=OC,
∴△AOC≌△BOC. 2分
∴∠ACO=∠BCO=∠ACB,∠AOC=∠BOC=∠AOB.
又∵∠ACB=∠AOB.
∴∠ACO=∠BCO=∠AOC=∠BOC. 4分
∴AC=BC=OC=OA=OB, 5分
∴四边形OACB是菱形. 6分
九年级数学试卷第 12 页 共 6 页
24.(本题8分)
(1)证明:如图,连接OA,OB,OP.
∵PM是⊙O的切线
∴∠PAO=90° 1分
∵在△PBO和△PAO中,PA=PB,OA=OB,OP=OP,
∴△PBO≌△PAO. 3分
∴∠PBO=∠PAO=90° 4分
∵点B在⊙O上, 5分
∴PB是⊙O的切线. 6分
(2)76 8分
25.(本题8分)
解:设该商品每件售价x元.
根据题意,得(x-30)[200-10(x-40)]=2 250. 5分
解这个方程,得x1=x2=45. 7分
答:该商店每件售价45元. 8分
26.(本题10分)
(1) 解:过点O作OM⊥FG于点M,延长MO交BC于点N,连接OG,
A
B
C
D
E
O
G
F
M
N
∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴BE是⊙O的直径.
∵∠C=∠D=∠DMN=90°,
∴四边形MNCD是矩形,
∴MN⊥BC,MN=CD=AB=4,
∴BN=CN.
∵OB=OE,
∴ON是△BCE的中位线,
∴ON=CE=1, …………………………… 1分
OM=4-1=3. …………………………………………………2分
在Rt△BCE中,BE==2,
∴OG=BE=.………………………………………………………………… 3分
在Rt△OMG中,MG==1 ………… ……………………………… 4分
∴FG=2MG=2. ……………………………………………………………… 5分
(2)A
B
C
D
A
B
C
D
E
M
N
O
九年级数学试卷第 12 页 共 6 页
解:如图,当⊙O与AD相切于点M时,连接OM并反向延长交BC于点N.
由(1)易得ON=CE=m,OB=OM=4-m,BN=3,
在Rt△BON中,ON2+BN2=OB2,即(m)2+32=(4-m)2,解得m=.……… 7分
∴当0<m<时,⊙O与AD相离;……………………………………………… 8分
当m=时,⊙O与AD相切; ……………………………………………… 9分
(1)
A
B
C
D
O
E
F
当<m<4时,⊙O与AD相交.……………………………………………… 10分
27.(本题10分)
(1)证明:连接AC、OC,作直径DE,交AC于点F,
∵AD=CD,OA=OC,
∴点D、O在AC的垂直平分线上,DE⊥AC,
∴= ……………………………1分
∴∠ADC=2∠EDC, ……………………………… 2分
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACB=∠AFD=90°,
∴DF∥BC,……………………………………………………………………3分
∴∠EDC=∠BCD.
∵BC=BD,
备用图
O
m
m
m
m
∴∠BDC=∠BCD,……………………………………………………………………4分∴∠ADC=2∠BDC.……………………………………………………………………5分
A
B
C
O
D
D
(2)解:①如图(2),两个点D即为所求;(画图2分)
(2)
②当0<m<时,点D的个数为0;………………………………………………8分
当m=时,点D的个数为1; …………………………………………………9分
九年级数学试卷第 12 页 共 6 页
当<m<4时,点D的个数为2.………………………………………………10分
九年级数学试卷第 12 页 共 6 页