• 489.50 KB
  • 2021-11-11 发布

2018年山东省东营市中考数学试卷

  • 29页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年山东省东营市中考数学试卷 ‎ ‎ 一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.‎ ‎1.(3.00分)﹣的倒数是(  )‎ A.﹣5 B.5 C.﹣ D.‎ ‎2.(3.00分)下列运算正确的是(  )‎ A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B.a2+a2=a4‎ C.a2•a3=a6 D.(xy2)2=x2y4‎ ‎3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是(  )‎ A. B. C. D.‎ ‎4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是(  )‎ A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1‎ ‎5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是(  )‎ 捐款数额 ‎10‎ ‎20‎ ‎30‎ ‎50‎ ‎100‎ 人数 ‎2‎ ‎4‎ ‎5‎ ‎3‎ ‎1‎ A.众数是100 B.中位数是30 C.极差是20 D.平均数是30‎ ‎6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为(  )‎ A.19 B.18 C.16 D.15‎ ‎7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是(  )‎ A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF ‎8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是(  )‎ A. B. C. D.‎ ‎9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为(  )‎ A. B. C. D.‎ ‎10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:‎ ‎①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是(  )‎ A.①②③④ B.②④ C.①②③ D.①③④‎ ‎ ‎ 二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.‎ ‎11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为   元.‎ ‎12.(3.00分)分解因式:x3﹣4xy2=   .‎ ‎13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是   .‎ ‎14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为   .‎ ‎15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是   .‎ ‎16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为   .‎ ‎17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为   .‎ ‎18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是   .‎ ‎ ‎ 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.‎ ‎19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;‎ ‎(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.‎ ‎20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:‎ 图书种类 频数(本)‎ 频率 名人传记 ‎175‎ a 科普图书 b ‎0.30‎ 小说 ‎110‎ c 其他 ‎65‎ d ‎(1)求该校九年级共捐书多少本;‎ ‎(2)统计表中的a=   ,b=   ,c=   ,d=   ;‎ ‎(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;‎ ‎(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.‎ ‎21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.‎ ‎22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.‎ ‎(1)求证:∠CAD=∠BDC;‎ ‎(2)若BD=AD,AC=3,求CD的长.‎ ‎23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.‎ ‎(1)求sinA的值;‎ ‎(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.‎ ‎24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:‎ 如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.‎ 经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).‎ 请回答:∠ADB=   °,AB=   .‎ ‎(2)请参考以上解决思路,解决问题:‎ 如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.‎ ‎25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.‎ ‎(1)求线段OC的长度;‎ ‎(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;‎ ‎(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.‎ ‎ ‎ ‎2018年山东省东营市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.‎ ‎1.(3.00分)﹣的倒数是(  )‎ A.﹣5 B.5 C.﹣ D.‎ ‎【分析】根据倒数的定义,互为倒数的两数乘积为1.‎ ‎【解答】解:﹣的倒数是﹣5,‎ 故选:A.‎ ‎ ‎ ‎2.(3.00分)下列运算正确的是(  )‎ A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B.a2+a2=a4‎ C.a2•a3=a6 D.(xy2)2=x2y4‎ ‎【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.‎ ‎【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;‎ B、a2+a2=2a2,此选项错误;‎ C、a2•a3=a5,此选项错误;‎ D、(xy2)2=x2y4,此选项正确;‎ 故选:D.‎ ‎ ‎ ‎3.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是(  )‎ A. B. C.‎ ‎ D.‎ ‎【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.‎ ‎【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;‎ B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;‎ C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;‎ D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;‎ 故选:B.‎ ‎ ‎ ‎4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是(  )‎ A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1‎ ‎【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.‎ ‎【解答】解:∵点P(m﹣2,m+1)在第二象限,‎ ‎∴,‎ 解得﹣1<m<2.‎ 故选:C.‎ ‎ ‎ ‎5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是(  )‎ 捐款数额 ‎10‎ ‎20‎ ‎30‎ ‎50‎ ‎100‎ 人数 ‎2‎ ‎4‎ ‎5‎ ‎3‎ ‎1‎ A.众数是100 B.中位数是30 C.极差是20 D.平均数是30‎ ‎【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.‎ ‎【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;‎ 该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;‎ 该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;‎ 该组数据的平均数是=不是30,所以选项D不正确.‎ 故选:B.‎ ‎ ‎ ‎6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为(  )‎ A.19 B.18 C.16 D.15‎ ‎【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.‎ ‎【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,‎ 根据题意得:,‎ 方程(①+②)÷2,得:2x+2y=18.‎ 故选:B.‎ ‎ ‎ ‎7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是(  )‎ A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF ‎【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;‎ ‎【解答】解:正确选项是D.‎ 理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,‎ ‎∴△CDE≌△BFE,CD∥AF,‎ ‎∴CD=BF,‎ ‎∵BF=AB,‎ ‎∴CD=AB,‎ ‎∴四边形ABCD是平行四边形.‎ 故选:D.‎ ‎ ‎ ‎8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是(  )‎ A. B. C. D.‎ ‎【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.‎ ‎【解答】‎ 解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.‎ 在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,‎ 所以AC=,‎ 故选:C.‎ ‎ ‎ ‎9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为(  )‎ A. B. C. D.‎ ‎【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.‎ ‎【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,‎ 即EF=2(6﹣x)‎ 所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)‎ 该函数图象是抛物线的一部分,‎ 故选:D.‎ ‎ ‎ ‎10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:‎ ‎①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是(  )‎ A.①②③④ B.②④ C.①②③ D.①③④‎ ‎【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;‎ ‎【解答】解:∵∠DAE=∠BAC=90°,‎ ‎∴∠DAB=∠EAC ‎∵AD=AE,AB=AC,‎ ‎∴△DAB≌△EAC,‎ ‎∴BD=CE,∠ABD=∠ECA,故①正确,‎ ‎∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,‎ ‎∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,‎ ‎∴∠CEB=90°,即CE⊥BD,故③正确,‎ ‎∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④‎ 正确,‎ 故选:A.‎ ‎ ‎ 二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.‎ ‎11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011 元.‎ ‎【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.‎ ‎【解答】解:4147亿元用科学记数法表示为4.147×1011,‎ 故答案为:4.147×1011‎ ‎ ‎ ‎12.(3.00分)分解因式:x3﹣4xy2= x(x+2y)(x﹣2y) .‎ ‎【分析】原式提取x,再利用平方差公式分解即可.‎ ‎【解答】解:原式=x(x2﹣4y2)=x(x+2y)(x﹣2y),‎ 故答案为:x(x+2y)(x﹣2y)‎ ‎ ‎ ‎13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是  .‎ ‎【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.‎ ‎【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,‎ ‎∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.‎ 故答案为:.‎ ‎ ‎ ‎14.(3.00分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为 y= .‎ ‎【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.‎ ‎【解答】解:设A坐标为(x,y),‎ ‎∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,‎ ‎∴x+5=0+3,y+0=0﹣3,‎ 解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),‎ 设过点A的反比例解析式为y=,‎ 把A(﹣2,﹣3)代入得:k=6,‎ 则过点A的反比例解析式为y=,‎ 故答案为:y=‎ ‎ ‎ ‎15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是 15 .‎ ‎【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.‎ ‎【解答】解:如图,过点D作DQ⊥AC于点Q,‎ 由作图知CP是∠ACB的平分线,‎ ‎∵∠B=90°,BD=3,‎ ‎∴DB=DQ=3,‎ ‎∵AC=10,‎ ‎∴S△ACD=•AC•DQ=×10×3=15,‎ 故答案为:15.‎ ‎ ‎ ‎16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 20π .‎ ‎【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l为5,然后根据圆锥的侧面积公式:S侧=πrl代入计算即可.‎ ‎【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,‎ 所以圆锥的母线长l==5,‎ 所以这个圆锥的侧面积是π×4×5=20π.‎ 故答案为:20π ‎ ‎ ‎17.(4.00分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为  .‎ ‎【分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.‎ ‎【解答】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.‎ 设直线AB′解析式为:y=kx+b 把点A(﹣1,﹣1)B′(2,﹣7)代入 解得 ‎∴直线AB′为:y=﹣2x﹣3,‎ 当y=0时,x=﹣‎ ‎∴M坐标为(﹣,0)‎ 故答案为:(﹣,0)‎ ‎ ‎ ‎18.(4.00分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是  .‎ ‎【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.‎ ‎【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…‎ ‎∵点A1(1,1)在直线y=x+b上 ‎∴代入求得:b=‎ ‎∴y=x+‎ ‎∵△OA1B1为等腰直角三角形 ‎∴OB1=2‎ 设点A2坐标为(a,b)‎ ‎∵△B1A2B2为等腰直角三角形 ‎∴A2C2=B1C2=b ‎∴a=OC2=OB1+B1C2=2+b 把A2(2+b,b)代入y=x+‎ 解得b=‎ ‎∴OB2=5‎ 同理设点A3坐标为(a,b)‎ ‎∵△B2A3B3为等腰直角三角形 ‎∴A3C3=B2C3=b ‎∴a=OC3=OB2+B2C3=5+b 把A2(5+b,b)代入y=x+‎ 解得b=‎ 以此类推,发现每个A的纵坐标依次是前一个的倍 则A2018的纵坐标是 故答案为:‎ ‎ ‎ 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.‎ ‎19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2018﹣()﹣1;‎ ‎(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.‎ ‎【分析】(1)先求出每一部分的值,再代入求出即可;‎ ‎(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.‎ ‎【解答】解:(1)原式=‎ ‎=;‎ ‎(2)‎ ‎∵解不等式①得:x>﹣3,‎ 解不等式②得:x≤1‎ ‎∴不等式组的解集为:﹣3<x≤1,‎ 则﹣1是不等式组的解,不是不等式组的解.‎ ‎ ‎ ‎20.(8.00分)2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:‎ 图书种类 频数(本)‎ 频率 名人传记 ‎175‎ a 科普图书 b ‎0.30‎ 小说 ‎110‎ c 其他 ‎65‎ d ‎(1)求该校九年级共捐书多少本;‎ ‎(2)统计表中的a= 0.35 ,b= 150 ,c= 0.22 ,d= 0.13 ;‎ ‎(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;‎ ‎(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.‎ ‎【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数;‎ ‎(2)根据频率=频数÷总数分别求解可得;‎ ‎(3)用总人数乘以样本中科普图书和小说的频率之和可得;‎ ‎(4)列表得出所有等可能结果,从中找到恰好1人捐“名人传记”,1人捐“科普图书”的结果数,利用概率公式求解可得.‎ ‎【解答】解:(1)该校九年级共捐书:;‎ ‎(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,‎ 故答案为:0.35、150、0.22、0.13;‎ ‎(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);‎ ‎(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:‎ ‎1‎ ‎2‎ ‎3‎ ‎1‎ ‎(2,1)‎ ‎(3,1)‎ ‎2‎ ‎(1,2)‎ ‎(3,2)‎ ‎3‎ ‎(1,3)‎ ‎(2,3)‎ 则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,‎ 所以所求的概率:.‎ ‎ ‎ ‎21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.‎ ‎【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.‎ ‎【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,‎ 根据题意得:﹣=4,‎ 解得:x=25,‎ 经检验,x=25是分式方程的根,且符合题意,‎ ‎∴3x=75,4x=100.‎ 答:小明的速度是75米/分,小刚的速度是100米/分.‎ ‎ ‎ ‎22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.‎ ‎(1)求证:∠CAD=∠BDC;‎ ‎(2)若BD=AD,AC=3,求CD的长.‎ ‎【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;‎ ‎(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.‎ ‎【解答】(1)证明:连接OD,如图所示.‎ ‎∵OB=OD,‎ ‎∴∠OBD=∠ODB.‎ ‎∵CD是⊙O的切线,OD是⊙O的半径,‎ ‎∴∠ODB+∠BDC=90°.‎ ‎∵AB是⊙O的直径,‎ ‎∴∠ADB=90°,‎ ‎∴∠OBD+∠CAD=90°,‎ ‎∴∠CAD=∠BDC.‎ ‎(2)解:∵∠C=∠C,∠CAD=∠CDB,‎ ‎∴△CDB∽△CAD,‎ ‎∴=.‎ ‎∵BD=AD,‎ ‎∴=,‎ ‎∴=,‎ 又∵AC=3,‎ ‎∴CD=2.‎ ‎ ‎ ‎23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.‎ ‎(1)求sinA的值;‎ ‎(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.‎ ‎【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;‎ ‎(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.‎ 分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;‎ 当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.‎ ‎【解答】解:(1)根据题意得△=25sin2A﹣16=0,‎ ‎∴sin2A=,‎ ‎∴sinA=或 ,‎ ‎∵∠A为锐角,‎ ‎∴sinA=;‎ ‎(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,‎ 则△≥0,‎ ‎∴100﹣4(k2﹣4k+29)≥0,‎ ‎∴﹣(k﹣2)2≥0,‎ ‎∴(k﹣2)2≤0,‎ 又∵(k﹣2)2≥0,‎ ‎∴k=2,‎ 把k=2代入方程,得y2﹣10y+25=0,‎ 解得y1=y2=5,‎ ‎∴△ABC是等腰三角形,且腰长为5.‎ 分两种情况:‎ 当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5‎ ‎∵sinA=,‎ ‎∴AD=3,BD=4∴DC=2,‎ ‎∴BC=.‎ ‎∴△ABC的周长为;‎ 当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,‎ ‎∵sinA=,‎ ‎∴A D=DC=3,‎ ‎∴AC=6.‎ ‎∴△ABC的周长为16,‎ 综合以上讨论可知:△ABC的周长为或16.‎ ‎ ‎ ‎24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:‎ 如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.‎ 经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).‎ 请回答:∠ADB= 75 °,AB= 4 .‎ ‎(2)请参考以上解决思路,解决问题:‎ 如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.‎ ‎【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;‎ ‎(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.‎ ‎【解答】解:(1)∵BD∥AC,‎ ‎∴∠ADB=∠OAC=75°.‎ ‎∵∠BOD=∠COA,‎ ‎∴△BOD∽△COA,‎ ‎∴==.‎ 又∵AO=,‎ ‎∴OD=AO=,‎ ‎∴AD=AO+OD=4.‎ ‎∵∠BAD=30°,∠ADB=75°,‎ ‎∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,‎ ‎∴AB=AD=4.‎ 故答案为:75;4.‎ ‎(2)过点B作BE∥AD交AC于点E,如图所示.‎ ‎∵AC⊥AD,BE∥AD,‎ ‎∴∠DAC=∠BEA=90°.‎ ‎∵∠AOD=∠EOB,‎ ‎∴△AOD∽△EOB,‎ ‎∴==.‎ ‎∵BO:OD=1:3,‎ ‎∴==.‎ ‎∵AO=3,‎ ‎∴EO=,‎ ‎∴AE=4.‎ ‎∵∠ABC=∠ACB=75°,‎ ‎∴∠BAC=30°,AB=AC,‎ ‎∴AB=2BE.‎ 在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,‎ 解得:BE=4,‎ ‎∴AB=AC=8,AD=12.‎ 在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,‎ 解得:CD=4.‎ ‎ ‎ ‎25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>‎ ‎0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.‎ ‎(1)求线段OC的长度;‎ ‎(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;‎ ‎(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.‎ ‎【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;‎ ‎(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;‎ ‎(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.‎ ‎【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,‎ 解得:x1=1,x2=3,即A(1,0),B(3,0),‎ ‎∴OA=1,OB=3‎ ‎∵△OCA∽△OBC,‎ ‎∴OC:OB=OA:OC,‎ ‎∴OC2=OA•OB=3,‎ 则OC=;‎ ‎(2)∵C是BM的中点,即OC为斜边BM的中线,‎ ‎∴OC=BC,‎ ‎∴点C的横坐标为,‎ 又OC=,点C在x轴下方,‎ ‎∴C(,﹣),‎ 设直线BM的解析式为y=kx+b,‎ 把点B(3,0),C(,﹣)代入得:,‎ 解得:b=﹣,k=,‎ ‎∴y=x﹣,‎ 又∵点C(,﹣)在抛物线上,代入抛物线解析式,‎ 解得:a=,‎ ‎∴抛物线解析式为y=x2﹣x+2;‎ ‎(3)点P存在,‎ 设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,‎ 则Q(x,x﹣),‎ ‎∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,‎ 当△BCP面积最大时,四边形ABPC的面积最大,‎ S△BCP=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,‎ 当x=﹣=时,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为(,﹣).‎ ‎ ‎