- 103.00 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
基础小卷速测(十) 等边(腰)三角形相关计算与证明
一、选择题
1.等腰三角形的两边长分别为5cm和7cm,则它的周长为( )
A.17cm
B.19cm
C.21cm
D.17cm或19cm
2.若等腰三角形的顶角为40°,则它的底角度数为( )
A.40° B.50° C.60° D.70°
3.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和C为圆心,以大于AC的长为半径画弧,两弧相交于M,N,作直线MN,交BC于D,连接AD,则∠BAD的度数为( )
A.65° B.60° C.55° D.45°
4.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )
A.8
B.9
C.10
D.11
5.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
6.如图,在△PAB中,PA=PB,M,N,K分别是边PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( ).
A.44° B.66° C.88° D.92°
二、填空题
7.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为______.
5
8.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是______.
1. 如图,已知点B、C、D、E在同一直线上,△ABC是等边三角形,且CG=CD,DF=DE,
则∠E=______.
10.如图,在△ABC中,∠ABC=∠ACB=72°,BD、CE分别是∠ABC和∠ACB的平分线,它们的交点为F,
则图中等腰三角形有 ______个.
三、解答题
11.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.
12.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD.
(2)若AB=CF,∠B=30°,求∠D的度数.
13.如图,△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:
△ABC为等腰三角形.
5
14.如图,在△ABC中,BP平分∠ABC,CP平分∠ACB,且PD∥AB,PE∥AC,BC=5,求△PDE的周长.
15.如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.
求证:(1)CE=AC+DC;(2)∠ECD=60°.
参考答案
1. D 2.D 3.A
4.C 【解析】∵ED是AB的垂直平分线,∴AD=BD,
∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.
5.D 【解析】∵△ABC是等边三角形,BD是AC上的中线,
∴∠ADB=∠CDB=90°,BD平分∠ABC,
∴BD⊥AC,
∵∠ACB=∠CDE+∠DEC=60°,CD=CE,
∴∠CDE=∠DEC=30°,
∴∠CBD=∠DEC,
∴DB=DE.
∠BDE=∠CDB+∠CDE=120°.
所以这四项都是正确的.
6.D【解析】∵PA=PB,∴∠A=∠B,
在△AMK和△BKN中,
∴△AMK≌△BKN,∴∠AMK=∠BKN,
∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,
∴∠A=∠MKN=44°,
∴∠P=180°-∠A-∠B=92°。
5
7.55°【解析】AB=AC,D为BC中点,
∴AD是∠BAC的平分线,∠B=∠C,
∵∠BAD=35°,
∴∠BAC=2∠BAD=70°,
∴∠C=(180°-70°)=55°。
8. 18°【解析】∵AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°,
∵BD是AC边上的高,
∴BD⊥AC,
∴∠DBC=90°-72°=18°。
9. 15°【解析】∵△ABC是等边三角形,
∴∠ACB=60°,∠ACD=120°,
∵CG=CD,
∴∠CDG=30°,∠FDE=150°,
∵DF=DE,
∴∠E=15°.
10. 8【解析】∠ABD=∠DBC=∠ECB=∠ACE=∠A=36°,
∠ABC=∠ACB=∠CDB=∠CFD=∠BFE=∠BEF=72°,
∴△ABC,△ABD,△ACE,△BEF,△CDF,△BCF,△BCE,△BCD均为等腰三角形,
∴共有8个等腰三角形.
11.证明:∵AB=AC=AD,
∴∠C=∠ABC,∠D=∠ABD,
∴∠ABC=∠CBD+∠D,
∵AD∥BC,
∴∠CBD=∠D,
∴∠ABC=∠D+∠D=2∠D,
又∵∠C=∠ABC,
∴∠C=2∠D.
12.解:(1)证明:∵AB∥CD,
∴∠B=∠C,
在△ABE和△CDF中,
∴△ABE≌△CDF(AAS),
∴AB=CD。
(2)∵△ABE≌△CDF,
∴AB=CD,BE=CF,
∵AB=CF,∠B=30°,
∴AB=BE,
∴△ABE是等腰三角形,
∴∠D=×(180°−30°)=75°.
5
13.证明:∵DF⊥AC,
∴∠DFA=∠EFC=90°,
∴∠A=90°-∠D,∠C=90°-∠CEF,
∵BD=BE,
∴∠BED=∠D.
∵∠BED=∠CEF,
∴∠D=∠CEF.
∴∠A=∠C.
∴△ABC为等腰三角形.
14.解:∵BP平分∠ABC,CP平分∠ACB,
∴∠ABP=∠PBD,∠ACP=∠PCE,
又∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=5.
1. 证明:(1)∵△ABC、△ADE是等边三角形,
∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=EC,
∵BD=BC+CD=AC+CD,
∴CE=BD=AC+CD。
(2)由(1)知△BAD≌△CAE,
∴∠ACE=∠ABD=60°,
∴∠ECD=180°-∠ACB-∠ACE=60°,
∴∠ECD=60°.
5