• 368.00 KB
  • 2021-11-11 发布

2018年湖北省黄冈市中考数学试卷

  • 25页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年湖北省黄冈市中考数学试卷 ‎ ‎ 一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)‎ ‎1.(3.00分)﹣的相反数是(  )‎ A.﹣ B.﹣ C. D.‎ ‎2.(3.00分)下列运算结果正确的是(  )‎ A.3a3•2a2=6a6 B.(﹣2a)2=﹣4a2 C.tan45°= D.cos30°=‎ ‎3.(3.00分)函数y=中自变量x的取值范围是(  )‎ A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1‎ ‎4.(3.00分)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为(  )‎ A.50° B.70° C.75° D.80°‎ ‎5.(3.00分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=(  )‎ A.2 B.3 C.4 D.2‎ ‎6.(3.00分)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为(  )‎ A.﹣1 B.2 C.0或2 D.﹣1或2‎ ‎ ‎ 二、填空题(本题共8小题,每题小3分,共24分 ‎7.(3.00分)实数16800000用科学记数法表示为   .‎ ‎8.(3.00分)因式分解:x3﹣9x=   .‎ ‎9.(3.00分)化简(﹣1)0+()﹣2﹣+=   .‎ ‎10.(3.00分)则a﹣=,则a2+值为   .‎ ‎11.(3.00分)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=   .‎ ‎12.(3.00分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为   .‎ ‎13.(3.00分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为   cm(杯壁厚度不计).‎ ‎14.(3.00分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为   .‎ ‎ ‎ 三、解答题(本题共10题,满分78分(x-2)≤8‎ ‎15.(5.00分)求满足不等式组的所有整数解.‎ ‎16.(6.00分)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.‎ ‎17.(8.00分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:‎ 图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.‎ ‎(1)被调查的总人数是   人,扇形统计图中C部分所对应的扇形圆心角的度数为   ;‎ ‎(2)补全条形统计图;‎ ‎(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有   人;‎ ‎(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.‎ ‎18.(7.00分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.‎ ‎(1)求证:∠CBP=∠ADB.‎ ‎(2)若OA=2,AB=1,求线段BP的长.‎ ‎19.(6.00分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.‎ ‎(1)求k的值与B点的坐标;‎ ‎(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.‎ ‎20.(8.00分)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.‎ ‎(1)求证△ABF≌△EDA;‎ ‎(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.‎ ‎21.(7.00分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.‎ ‎(1)求坡底C点到大楼距离AC的值;‎ ‎(2)求斜坡CD的长度.‎ ‎22.(8.00分)已知直线l:y=kx+1与抛物线y=x2﹣4x.‎ ‎(1)求证:直线l与该抛物线总有两个交点;‎ ‎(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.‎ ‎23.(9.00分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:‎ x ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ z ‎19‎ ‎18‎ ‎17‎ ‎16‎ ‎15‎ ‎14‎ ‎13‎ ‎12‎ ‎11‎ ‎10‎ ‎10‎ ‎10‎ ‎(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;‎ ‎(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;‎ ‎(3)当x为何值时,月利润w有最大值,最大值为多少?‎ ‎24.(14.00分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.‎ ‎(1)当t=2时,求线段PQ的长;‎ ‎(2)求t为何值时,点P与N重合;‎ ‎(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.‎ ‎ ‎ ‎2018年湖北省黄冈市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的)‎ ‎1.(3.00分)﹣的相反数是(  )‎ A.﹣ B.﹣ C. D.‎ ‎【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.‎ ‎【解答】解:﹣的相反数是.‎ 故选:C.‎ ‎ ‎ ‎2.(3.00分)下列运算结果正确的是(  )‎ A.3a3•2a2=6a6 B.(﹣2a)2=﹣4a2 C.tan45°= D.cos30°=‎ ‎【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.‎ ‎【解答】解:A、原式=6a5,故本选项错误;‎ B、原式=4a2,故本选项错误;‎ C、原式=1,故本选项错误;‎ D、原式=,故本选项正确.‎ 故选:D.‎ ‎ ‎ ‎3.(3.00分)函数y=中自变量x的取值范围是(  )‎ A.x≥﹣1且x≠1 B.x≥﹣1 C.x≠1 D.﹣1≤x<1‎ ‎【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.‎ ‎【解答】解:根据题意得到:,‎ 解得x≥﹣1且x≠1,‎ 故选:A.‎ ‎ ‎ ‎4.(3.00分)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为(  )‎ A.50° B.70° C.75° D.80°‎ ‎【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.‎ ‎【解答】解:∵DE是AC的垂直平分线,‎ ‎∴DA=DC,‎ ‎∴∠DAC=∠C=25°,‎ ‎∵∠B=60°,∠C=25°,‎ ‎∴∠BAC=95°,‎ ‎∴∠BAD=∠BAC﹣∠DAC=70°,‎ 故选:B.‎ ‎ ‎ ‎5.(3.00分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=(  )‎ A.2 B.3 C.4 D.2‎ ‎【分析】‎ 根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.‎ ‎【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,‎ ‎∴AE=CE=5,‎ ‎∵AD=2,‎ ‎∴DE=3,‎ ‎∵CD为AB边上的高,‎ ‎∴在Rt△CDE中,CD=,‎ 故选:C.‎ ‎ ‎ ‎6.(3.00分)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为(  )‎ A.﹣1 B.2 C.0或2 D.﹣1或2‎ ‎【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.‎ ‎【解答】解:当y=1时,有x2﹣2x+1=1,‎ 解得:x1=0,x2=2.‎ ‎∵当a≤x≤a+1时,函数有最小值1,‎ ‎∴a=2或a+1=0,‎ ‎∴a=2或a=﹣1,‎ 故选:D.‎ ‎ ‎ 二、填空题(本题共8小题,每题小3分,共24分 ‎7.(3.00分)实数16800000用科学记数法表示为 1.68×107 .‎ ‎【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.‎ ‎【解答】解:16800000=1.68×107.‎ 故答案为:1.68×107.‎ ‎ ‎ ‎8.(3.00分)因式分解:x3﹣9x= x(x+3)(x﹣3) .‎ ‎【分析】先提取公因式x,再利用平方差公式进行分解.‎ ‎【解答】解:x3﹣9x,‎ ‎=x(x2﹣9),‎ ‎=x(x+3)(x﹣3).‎ ‎ ‎ ‎9.(3.00分)化简(﹣1)0+()﹣2﹣+= ﹣1 .‎ ‎【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.‎ ‎【解答】解:原式=1+4﹣3﹣3‎ ‎=﹣1.‎ 故答案为:﹣1.‎ ‎ ‎ ‎10.(3.00分)则a﹣=,则a2+值为 8 .‎ ‎【分析】根据分式的运算法则即可求出答案.‎ ‎【解答】解:∵a﹣=‎ ‎∴(a﹣)2=6‎ ‎∴a2﹣2+=6‎ ‎∴a2+=8‎ 故答案为:8‎ ‎ ‎ ‎11.(3.00分)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC= 2 .‎ ‎【分析】连接BD.在Rt△ADB中,求出AB,再在Rt△ACB中求出AC即可解决问题;‎ ‎【解答】解:连接BD.‎ ‎∵AB是直径,‎ ‎∴∠C=∠D=90°,‎ ‎∵∠CAB=60°,AD平分∠CAB,‎ ‎∴∠DAB=30°,‎ ‎∴AB=AD÷cos30°=4,‎ ‎∴AC=AB•cos60°=2,‎ 故答案为2.‎ ‎ ‎ ‎12.(3.00分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为 16 .‎ ‎【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.‎ ‎【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,‎ ‎∵3<第三边的边长<9,‎ ‎∴第三边的边长为7.‎ ‎∴这个三角形的周长是3+6+7=16.‎ 故答案为:16.‎ ‎ ‎ ‎13.(3.00分)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为 20 cm(杯壁厚度不计).‎ ‎【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.‎ ‎【解答】解:如图:‎ 将杯子侧面展开,作A关于EF的对称点A′,‎ 连接A′B,则A′B即为最短距离,A′B===20(cm).‎ 故答案为20.‎ ‎ ‎ ‎14.(3.00分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为  .‎ ‎【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a>0,b<0的结果数,然后根据概率公式求解.‎ ‎【解答】解:画树状图为:‎ 共有12种等可能的结果数,满足a>0,b<0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,‎ 所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,‎ 所以该二次函数图象恰好经过第一、二、四象限的概率==.‎ 故答案为.‎ ‎ ‎ 三、解答题(本题共10题,满分78分(x-2)≤8‎ ‎15.(5.00分)求满足不等式组的所有整数解.‎ ‎【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.‎ ‎【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1,‎ 解不等式x﹣1<3﹣x,得:x<2,‎ 则不等式组的解集为﹣1≤x<2,‎ 所以不等式组的整数解为﹣1、0、1.‎ ‎ ‎ ‎16.(6.00分)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.‎ ‎【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.‎ ‎【解答】解:设订购了A型粽子x千克,B型粽子y千克,‎ 根据题意,得,‎ 解得.‎ 答:订购了A型粽子40千克,B型粽子60千克.‎ ‎ ‎ ‎17.(8.00分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:‎ 图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.‎ ‎(1)被调查的总人数是 50 人,扇形统计图中C部分所对应的扇形圆心角的度数为 216° ;‎ ‎(2)补全条形统计图;‎ ‎(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有 180 人;‎ ‎(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.‎ ‎【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;‎ ‎(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;‎ ‎(3)用总人数乘以样本中A类别人数所占百分比可得;‎ ‎(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.‎ ‎【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×=216°,‎ 故答案为:50、216°;‎ ‎(2)B类别人数为50﹣(5+30+5)=10人,‎ 补全图形如下:‎ ‎(3)估计该校学生中A类有1800×10%=180人,‎ 故答案为:180;‎ ‎(4)列表如下:‎ 女1‎ 女2‎ 女3‎ 男1‎ 男2‎ 女1‎ ‎﹣﹣﹣‎ 女2女1‎ 女3女1‎ 男1女1‎ 男2女1‎ 女2‎ 女1女2‎ ‎﹣﹣﹣‎ 女3女2‎ 男1女2‎ 男2女2‎ 女3‎ 女1女3‎ 女2女3‎ ‎﹣﹣﹣‎ 男1女3‎ 男2女3‎ 男1‎ 女1男1‎ 女2男1‎ 女3男1‎ ‎﹣﹣﹣‎ 男2男1‎ 男2‎ 女1男2‎ 女2男2‎ 女3男2‎ 男1男2‎ ‎﹣﹣﹣‎ 所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,‎ ‎∴被抽到的两个学生性别相同的概率为=.‎ ‎ ‎ ‎18.(7.00分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.‎ ‎(1)求证:∠CBP=∠ADB.‎ ‎(2)若OA=2,AB=1,求线段BP的长.‎ ‎【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;‎ ‎(2)证明△AOP∽△ABD,然后利用相似比求BP的长.‎ ‎【解答】(1)证明:连接OB,如图,‎ ‎∵AD是⊙O的直径,‎ ‎∴∠ABD=90°,‎ ‎∴∠A+∠ADB=90°,‎ ‎∵BC为切线,‎ ‎∴OB⊥BC,‎ ‎∴∠OBC=90°,‎ ‎∴∠OBA+∠CBP=90°,‎ 而OA=OB,‎ ‎∴∠A=∠OBA,‎ ‎∴∠CBP=∠ADB;‎ ‎(2)解:∵OP⊥AD,‎ ‎∴∠POA=90°,‎ ‎∴∠P+∠A=90°,‎ ‎∴∠P=∠D,‎ ‎∴△AOP∽△ABD,‎ ‎∴=,即=,‎ ‎∴BP=7.‎ ‎ ‎ ‎19.(6.00分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.‎ ‎(1)求k的值与B点的坐标;‎ ‎(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.‎ ‎【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;‎ ‎(2)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.‎ ‎【解答】解:(1)把点A(3,4)代入y=(x>0),得 k=xy=3×4=12,‎ 故该反比例函数解析式为:y=.‎ ‎∵点C(6,0),BC⊥x轴,‎ ‎∴把x=6代入反比例函数y=,得 y==6.‎ 则B(6,2).‎ 综上所述,k的值是12,B点的坐标是(6,2).‎ ‎(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.‎ ‎∵A(3,4)、B(6,2)、C(6,0),‎ ‎∴点D的横坐标为3,yA﹣yD=yB﹣yC即4﹣yD=2﹣0,故yD=2.‎ 所以D(3,2).‎ ‎②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.‎ ‎∵A(3,4)、B(6,2)、C(6,0),‎ ‎∴点D的横坐标为3,yD′﹣yA=yB﹣yC即yD﹣4=2﹣0,故yD′=6.‎ 所以D′(3,6).‎ ‎③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.‎ ‎∵A(3,4)、B(6,2)、C(6,0),‎ ‎∴xD″﹣xB=xC﹣xA即xD″﹣6=6﹣3,故xD″=9.‎ yD″﹣yB=yC﹣yA即yD″﹣2=0﹣4,故yD″=﹣2.‎ 所以D″(9,﹣2).‎ 综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).‎ ‎ ‎ ‎20.(8.00分)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.‎ ‎(1)求证△ABF≌△EDA;‎ ‎(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.‎ ‎【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;‎ ‎(2)只要证明FB⊥AD即可解决问题;‎ ‎【解答】(1)证明:∵四边形ABCD是平行四边形,‎ ‎∴AB=CD,AD=BC,∠ABC=∠ADC,‎ ‎∵BC=BF,CD=DE,‎ ‎∴BF=AD,AB=DE,‎ ‎∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,‎ ‎∴∠ADE=∠ABF,‎ ‎∴△ABF≌△EDA.‎ ‎(2)证明:延长FB交AD于H.‎ ‎∵AE⊥AF,‎ ‎∴∠EAF=90°,‎ ‎∵△ABF≌△EDA,‎ ‎∴∠EAD=∠AFB,‎ ‎∵∠EAD+∠FAH=90°,‎ ‎∴∠FAH+∠AFB=90°,‎ ‎∴∠AHF=90°,即FB⊥AD,‎ ‎∵AD∥BC,‎ ‎∴FB⊥BC.‎ ‎ ‎ ‎21.(7.00分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.‎ ‎(1)求坡底C点到大楼距离AC的值;‎ ‎(2)求斜坡CD的长度.‎ ‎【分析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;‎ ‎(2)由相似三角形△ABC∽△ECD的对应边成比例解答.‎ ‎【解答】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC===20(米)‎ 答:坡底C点到大楼距离AC的值是20米.‎ ‎(2)设CD=2x,则DE=x,CE=x,‎ 在Rt△ABC中,∠ABC=30°,则BC===60(米),‎ 在Rt△BDF中,∵∠BDF=45°,‎ ‎∴BF=DF,‎ ‎∴60﹣x=20+x,‎ ‎∴x=40﹣60.‎ ‎∴CD的长为(80﹣120)米.‎ ‎ ‎ ‎22.(8.00分)已知直线l:y=kx+1与抛物线y=x2﹣4x.‎ ‎(1)求证:直线l与该抛物线总有两个交点;‎ ‎(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.‎ ‎【分析】(1)联立两解析式,根据判别式即可求证;‎ ‎(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.‎ ‎【解答】解:(1)联立 化简可得:x2﹣(4+k)x﹣1=0,‎ ‎∴△=(4+k)2+4>0,‎ 故直线l与该抛物线总有两个交点;‎ ‎(2)当k=﹣2时,‎ ‎∴y=﹣2x+1‎ 过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,‎ ‎∴联立 解得:或 ‎∴A(1﹣,2﹣1),B(1+,﹣1﹣2)‎ ‎∴AF=2﹣1,BE=1+2‎ 易求得:直线y=﹣2x+1与x轴的交点C为(,0)‎ ‎∴OC=‎ ‎∴S△AOB=S△AOC+S△BOC ‎=OC•AF+OC•BE ‎=OC(AF+BE)‎ ‎=××(2﹣1+1+2)‎ ‎=‎ ‎ ‎ ‎23.(9.00分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z(元)与月份x(月)的关系如下表:‎ x ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ z ‎19‎ ‎18‎ ‎17‎ ‎16‎ ‎15‎ ‎14‎ ‎13‎ ‎12‎ ‎11‎ ‎10‎ ‎10‎ ‎10‎ ‎(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;‎ ‎(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;‎ ‎(3)当x为何值时,月利润w有最大值,最大值为多少?‎ ‎【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决;‎ ‎(2)根据题目中的解析式和(1)中的解析式可以解答本题;‎ ‎(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.‎ ‎【解答】解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,‎ ‎,得,‎ 即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=﹣x+20,‎ 当10≤x≤12时,z=10,‎ 由上可得,z=;‎ ‎(2)当1≤x≤8时,‎ w=(x+4)(﹣x+20)=﹣x2+16x+80,‎ 当x=9时,‎ w=(﹣9+20)×(﹣9+20)=121,‎ 当10≤x≤12时,‎ w=(﹣x+20)×10=﹣10x+200,‎ 由上可得,w=;‎ ‎(3)当1≤x≤8时,w=﹣x2+16x+80=﹣(x﹣8)2+144,‎ ‎∴当x=8时,w取得最大值,此时w=144;‎ 当x=9时,w=121,‎ 当10≤x≤12时,w=﹣10x+200,‎ 则当x=10时,w取得最大值,此时w=100,‎ 由上可得,当x为8时,月利润w有最大值,最大值144万元.‎ ‎ ‎ ‎24.(14.00分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠‎ C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.‎ ‎(1)当t=2时,求线段PQ的长;‎ ‎(2)求t为何值时,点P与N重合;‎ ‎(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.‎ ‎【分析】(1)解直角三角形求出PM,QM即可解决问题;‎ ‎(2)根据点P、N的路程之和=24,构建方程即可解决问题,;‎ ‎(3)分四种情形考虑问题即可解决问题;‎ ‎【解答】解:(1)当t=2时,OM=2,‎ 在Rt△OPM中,∠POM=60°,‎ ‎∴PM=OM•tan60°=2,‎ 在Rt△OMQ中,∠QOM=30°,‎ ‎∴QM=OM•tan30°=,‎ ‎∴PQ=CN﹣QM=2﹣=.‎ ‎(2)由题意:8+(t﹣4)+2t=24,‎ 解得t=.‎ ‎(3)①当0<x<4时,S=•2t•4=4t.‎ ‎②当4≤x<时,S=×[8﹣(t﹣4)﹣(2t﹣8)]×4=40﹣6t.‎ ‎③当≤x<8时.S=×[(t﹣4)+(2t﹣8)﹣8]×4=6t﹣40.‎ ‎④当8≤x≤12时,S=S菱形ABCO﹣S△AON﹣S△ABP=32﹣•(24﹣2t)•4﹣•[8﹣(t﹣4)]•4=6t﹣40.‎ ‎ ‎